Name:

Enrolment No:

10

3

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018

Course: Mathematical Methods Semester: I

Course Code: DSQT 1003

Programme: BA (H) Energy Economics

Time: 03 hrs. Max. Marks: 100

Instructions: Answer all the questions from Section A, Four questions from Section B, Three questions from

Section C and Section D is **compulsory**.

SECTION	A	(5*4=2)	0 marks)
----------------	---	---------	----------

S. No.	Find the derivative dy/dx of the following functions (Q 1 to Q 3)		CO
Q 1	$y = (5x^2 + 3)^3$	4	1
Q 2	$y = (3x^2 - 2)(x + 1)$	4	1
Q 3	$y = (3x^4 - 1)/(2x^3 + 5)$	4	1
	Find the integration of the following functions (Q 4 and Q 5)	4	
Q 4	$y = \int (2x^3 - x^2) dx$	4	1
Q 5	$y = \int_0^5 (4x^2 + 6x + 3) dx$	4	1
	SECTION B (4*5 = 20 marks)	1	
Q 1	Determine the rank (ρ) of the following matrix. $B = \begin{bmatrix} 12 & 0 & 3 \\ 9 & 2 & 5 \\ 4 & 6 & 1 \end{bmatrix}$	5	1
Q 2	Use implicit differentiation to find the derivative dy/dx for the following equation. $7x^4 + 3x^3y + 9xy^2 = 62$	5	1
Q 3	Check whether the following function is concave or convex at $x = 2$ $y = (5x^2 - 4)^2$	5	2
Q 4	Find the critical value(s) at which the following function is optimized. $y = x^3 - 18x^2 + 96x - 80$ Determine if the function is at relative maximum or minimum at the critical value(s).	5	3
Q 5	Assume that the rate of net investment is given as $I = 10t^{3/5}$, and capital stock (K)	10	3

at t = 0 is 750. Find the capital stock function K.

SECTION-C (3*10 = 30 marks)				
Q 1	Q 1 Assume that the marginal cost (MC) is given as $MR = 24 + 4Q - 12Q^2$, and fixed cost (FC) is 45. Find total cost (TC), average cost (AC) and variable cost (VC) functions.			
Q 2	, ,		4	
Q 3			3	
Q 4	Let B is a 3x3 matrix given as B = $\begin{bmatrix} 14 & 0 & 6 \\ 9 & 5 & 0 \\ 0 & 11 & 8 \end{bmatrix}$. Compute the inverse of matrix B.	10	1	
	SECTION-D (2*15 = 30 marks)			
Q 1	Use Lagrange multiplier to optimize the following function: $z = 4x^2 + 3xy + 6y^2 \text{ subject to the constraint } x + y = 56$		3	
Q 2	Use Cramer's rule to solve for the unknowns in the following system of equations. $11x - y - z = 31$ $-x + 6y - 2z = 26$ $-x - 2y + 7z = 24$	15	2	