Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018			
Course: Mathematical Methods Semester: I Course Code: DSQT 1003			
Programme: BA (H) Energy Economics			
Instructions: Answer all the questions from Section A, Four questions from Section B, Three questions from Section C and Section D is compulsory.			
SECTION A ($5 * \mathbf{4} \mathbf{~} \mathbf{2 0}$ marks)			
S. No.	Find the derivative $d y / d x$ of the following functions (Q 1 to Q 3)	Marks	CO
Q 1	$y=\left(5 x^{2}+3\right)^{3}$	4	1
Q 2	$y=\left(3 x^{2}-2\right)(x+1)$	4	1
Q 3	$y=\left(3 x^{4}-1\right) /\left(2 x^{3}+5\right)$	4	1
	Find the integration of the following functions (Q 4 and Q 5)	4	
Q 4	$y=\int\left(2 x^{3}-x^{2}\right) d x$	4	1
Q 5	$y=\int_{0}^{5}\left(4 x^{2}+6 x+3\right) d x$	4	1
SECTION B (4*5 = 20 marks)			
Q 1	Determine the rank (ρ) of the following matrix. $B=\left[\begin{array}{ccc} 12 & 0 & 3 \\ 9 & 2 & 5 \\ 4 & 6 & 1 \end{array}\right]$	5	1
Q 2	Use implicit differentiation to find the derivative $d y / d x$ for the following equation. $7 x^{4}+3 x^{3} y+9 x y^{2}=62$	5	1
Q 3	Check whether the following function is concave or convex at $x=2$ $y=\left(5 x^{2}-4\right)^{2}$	5	2
Q 4	Find the critical value(s) at which the following function is optimized. $y=x^{3}-18 x^{2}+96 x-80$ Determine if the function is at relative maximum or minimum at the critical value(s).	5	3
Q 5	Assume that the rate of net investment is given as $I=10 t^{3 / 5}$, and capital stock (K) at $t=0$ is 750 . Find the capital stock function K.	10	3

SECTION-C (3*10 = 30 marks)			
Q 1	Assume that the marginal cost (MC) is given as $M R=24+4 Q-12 Q^{2}$, and fixed cost $(F C)$ is 45 . Find total cost $(T C)$, average cost $(A C)$ and variable cost $(V C)$ functions.	10	4
Q 2	The total cost function is given as $C(x)=x^{3}-5 x^{2}+60 x, x \geq 0$, where x represents units of output. (a) Compute the marginal cost function $C^{\prime}(x)$. (b) Find the value of x at which average cost (AC) is minimum.	10	4
Q 3	Assume that the total revenue function is $R=1400 Q-6 Q^{2}$ and total cost function is $C=1500+8 Q$, and $Q>0$. (a) Find the level of output at which profit is maximum. (b) Calculate the maximum profit.	10	3
Q 4	Let B is a 3×3 matrix given as $B=\left[\begin{array}{ccc}14 & 0 & 6 \\ 9 & 5 & 0 \\ 0 & 11 & 8\end{array}\right]$. Compute the inverse of matrix B.	10	1
SECTION-D (2*15 = 30 marks)			
Q 1	Use Lagrange multiplier to optimize the following function: $z=4 x^{2}+3 x y+6 y^{2}$ subject to the constraint $x+y=56$	15	3
Q 2	Use Cramer's rule to solve for the unknowns in the following system of equations. $\begin{gathered} 11 x-y-z=31 \\ -x+6 y-2 z=26 \\ -x-2 y+7 z=24 \end{gathered}$	15	2

