Name:						
Enrolme						
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018 Course: Business Mathematics Semester: I					
-		SQT1001				
	Max. tions: Section A and B all questions are compulsory. Answer any five question is any three questions in section D.	Marks: 100 n section C an	nd			
	SECTION A					
S. No.		Marks	CO			
Q 1	Fill in the blanks:	10				
a)	$\int_{2}^{} \left(x^3 - x^2 + \frac{5}{x^2} \right) = 0$	2	CO1			
b)	If production is zero then is equal to fixed cost.	2	CO1			
c)	Relationship between and quantity demanded is called demand function	n. 2	CO1			
d)	Revenue Is also called function	2	CO1			
e)	If for any function at $x=c$, first derivative is zero and second derivative is negative that $x=c$ function will have itsvalue.	en 2	CO1			
Q2	State with reasons which of the following statements is true or false:	10	CO1			
a)	$3x^2 - 5x^4$ is odd function.	2	CO1			
b)	Sum of following series is 216 $-\frac{1}{4} + \frac{1}{2} - 1 + 2 - 4 + 8 \dots \dots \infty$	2	C01			
c)	For given sets A,B,C $(A \cup B) \cup C = A \cup (B \cup C)$	2	CO1			

d)	For two matrix A and B		
	(A-B)' = A' * B'	2	CO1
e)	Derivative of a^x is also a^x where a is constant.		CO1
	SECTION B		
Q 3	Compute		
	$3A^2 + 4A' - 7I$		
	Where I is unit matrix and	5	CO1
	$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 1 & -2 & 0 \end{bmatrix}$		
Q4	Among the 30 students of a class, 25 passed in mathematics and 23 passed in		
	economics. If 30 students failed in both, how many students passed in both the subject.	5	CO2
Q5	Find the inverse of the matrix		
	$A = \begin{bmatrix} 3 & -1 & -2 \\ 2 & -1 & 3 \\ -1 & 0 & 2 \end{bmatrix}$	5	CO1
Q6	Vinayak saved ₹1000 in the first years and in each year after the first he saved 1% more than he did in the preceding year. How much did he save in the 10 th year?	5	CO2
	SECTION-C		•
Q 7	Find the integration of the following function		
	$\frac{(\log x)^2}{x}$	6	CO1

Q8	Find the maximum and minimum value of the function. $y = 2x^3 - 24x + 47$	6	CO1, CO2		
Q9	Find the point of inflexion on the curve and determine at that point curve changes from convex to concave (Type-I) or concave to convex(Type-II). $y = 20 + 5x + 12x^2 - 2x^3$	6	CO1, CO2		
Q10	Evaluate $\int \frac{(2x+1)}{\sqrt{2x^2+2x+1}} dx$	6	CO1,		
Q11	Evaluate following using integration by part $\int x^2 e^x dx$	6	CO1,		
Q12	Evaluate $\int_{1}^{2} x \log x dx$	6	CO1,		
SECTION-D					
Q13	The prices, in rupees per unit, of the three commodities X, Y and Z are x, y and z respectively. A purchases 4 units of Z and sells 3 units of X and 5 units of Y. B purchases 3 units of Y and sells 2 units of X and 1 unit of Z. C purchases 1 unit of X and sells 4 units of Y and 6 units of Z. In the process A, B and C earn $\gtrless6000$, 5000 and 13000 respectively. Using matrices, find the prices of the three commodities.	10	CO2, CO3, CO4		

Q14	The total revenue received from the sale of x units of a product is given by $R(x) = 600x - \frac{x^2}{25}$ Find (a) The average revenue function (b) The marginal revenue function and Marginal revenue, when x=25 (c) Actual revenue from the sale of 26 th unit.	10	CO2, CO3, CO4
Q15	The total cost function of a manufacturing firm is given by $C = \frac{1}{3}x^3 - 5x^2 + 28x + 10$ Find the output at which the marginal cost is minimum.	10	CO2, CO3, CO4
Q16	A company suffers a loss of ₹48, if its products do not sell at all. Marginal revenue and marginal cost function for the product are given by MR = 20 - 4x and MC = -10 + 2xDetermine (i) Profit function (ii) Break-even point (iii) Total Profit at Break-even Point	10	CO2, CO3, CO4

Name: Enrolmo	ent No:			
	UNIVERSITY OF PETI	ROLEUM AND ENERGY STUDIES		
	End Semester E	Examination, December 2018		
Course	: Business Mathematics	Semester: I		
Program	mme: BBA(DM/AM/FT/AIS/Core/E-Bus	s)		
Time: 03 hrs. Max. Marks: 100		: 100		
	tions: Section A and B all questions are c any three questions in section D.	compulsory. Answer any five question in se	ction C a	nd
	S	SECTION A		
S. No.			Marks	CO
Q 1	Fill in the blanks:		10	
a)				

 $\int_{2}^{2} \left(x^{3} - x^{2} + \frac{5}{x^{2}} \right) = \underline{\qquad}$

If production is ______ then loss is equal to fixed cost.

 Revenue
 Is also called
 function

at x=c function will have its _____value.

Matrix inverse exist only when determinant is zero.

Sum of following series is 216

Relationship between Price and quantity demanded is called_____

State with reasons which of the following statements is true or false:

If for any function at x=c, first derivative is zero and second derivative is positive then

 $-\frac{1}{4}+\frac{1}{2}-1+2-4+8....\infty$

b)

c)

d)

e)

Q2

a)

b)

CO1

CO1

CO1

CO1

CO1

CO1

CO1

CO1

2

2

2

2

2

10

2

2

	For given sets A B C		
c)	For given sets A,B,C $(A \cup B) \cap C = A \cup (B \cap C)$	2	CO1
	$(A \cup D) \cap C = A \cup (D \cap C)$		
d)	For two matrix A and B		
	(A-B)' = A'/B'	2	CO1
e)	Derivative of a^x is also $a^x / \log x$ where a is constant.	2	CO1
	SECTION B		<u> </u>
Q 3	Compute		
×۰	Compute		
	$5A^2 - 3A' + 7I$		
	Where I is unit matrix and	5	CO1
		·	001
	$A = \begin{bmatrix} -1 & 0 & 2 \\ 0 & 1 & -2 \\ -1 & 2 & 0 \end{bmatrix}$		
Q4	Among the 450 students of a class, 200 passed in mathematics and 300 passed in		
	economics. If 30 students failed in both, how many students passed in both the subject.	5	CO2
Q5	Find the inverse of the matrix		
	$A = \begin{bmatrix} 3 & 2 & 1 \\ 0 & 1 & 2 \\ -2 & 1 & -1 \end{bmatrix}$	5	CO1
Q6	A firm produced 2000 sets of T.V. during its first year. The total sets produced at the end of 5 years is 14000.Estimate the annual rate of increase in production if the	5	CO2
	increase in each year in uniform.		
	SECTION-C		<u> </u>
Q 7	Find the derivative of the following function		
		,	
	$\frac{x^2 + 3x + 1}{x^2 - x + 1}$	6	CO1
	$x^{-} - x + 1$		

Q8	Find the maximum an	d minimum va	lue of the functi	on			
		$y = \frac{1}{2}$	$\frac{1}{3}x^3 - 2x^2 + 3x^3$	x + 1		6	CO1, CO2
Q9	Find the point of infle	xion on the cur	ve and determin	e at that po	oint curve changes from		
	convex to concave (T	vpe-I) or conca	ive to convex(T	vpe-II).			CO1
	× ×			-		6	CO1, CO2
		y =	$x^4 - 6x^2 + 8x$	- 1			
Q10	Evaluate						
		$\int (x + $	$(-2)\sqrt{2x^2+2x}$	+1 dx		6	CO1,
Q11	Evaluate following us	ing integration	by part				
		C				(601
		$\int (2x^2)$	$(6x^2 - x^2)(6x^2 - x^2)$	25) dx		6	CO1,
Q12	Using Properties of de	efinite integral	prove that				
	$\int_{-1}^{1} (x^3 - 5x) dx + \int_{-2}^{2} (16x^2 - 3x^4) dx$ $= 2 \int_{0}^{2} (16x^2 - 3x^4) dx - \int_{-3}^{3} (12x^3 - 5x) dx$					6	CO1,
			SECTION	·D			
Q13	A salesman has the fol have different rate of	U	of sales during t	nree montl	hs for three items which		
	Month	S	ales of units		Total commission d		CO2,
		Α	В	С		10	CO2, CO3,
	Iomnomy	90	100	20	800		CO4
	January	1.00			000		
	February March	130 60	50 100	40 30	900 850		

Q14	 1) The total revenue received from the sale of x units of a product is given by R(x) = 200x - \frac{x^2}{5} Find (a) The average revenue function (b) The marginal revenue function and Marginal revenue, when x=20 (c) Actual revenue from the sale of 21st unit. 	10	CO2, CO3, CO4
Q15	XYZ Ltd. find that the cost of production of one unit is $\mathfrak{Z}(\frac{x}{3} - 10)$ and the fixed cost is $\mathfrak{Z}300$. Calculate the output at which the cost is minimum. Also calculate average cost and marginal cost at that output.	10	CO2, CO3, CO4
Q16	If, MC is marginal cost and MR is marginal revenue and $MC = 20 + \frac{x}{30}$, and $MR = 35$, The fixed cost is 2500, determine the maximum profit and profit maximising level output.	10	CO2, CO3, CO4