Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018			
Course: Business Mathematics Semester: I Programme: BBA(DM/AM/FT/AIS/Core/E-Bus) CC:DSQT1001 Time: 03 hrs. Max. Marks: 100 Instructions: Section A and B all questions are compulsory. Answer any five question in section C and answer any three questions in section D.			
SECTION A			
S. No.		Marks	CO
Q 1	Fill in the blanks:	10	
a)	$\int_{2}^{-}\left(x^{3}-x^{2}+\frac{5}{x^{2}}\right)=0$	2	CO1
b)	If production is zero then ___ is equal to fixed cost.	2	CO1
c)	Relationship between ___ and quantity demanded is called demand function.	2	CO1
d)	$\frac{\text { Revenue }}{\text { quantity sold }}$ Is also called ___ function	2	CO1
e)	If for any function at $\mathrm{x}=\mathrm{c}$, first derivative is zero and second derivative is negative then at $\mathrm{x}=\mathrm{c}$ function will have its \qquad value.	2	CO1
Q2	State with reasons which of the following statements is true or false:	10	CO1
a)	$3 x^{2}-5 x^{4}$ is odd function.	2	CO1
b)	Sum of following series is 216 $-\frac{1}{4}+\frac{1}{2}-1+2-4+8 \ldots \ldots \ldots \infty$	2	CO1
c)	For given sets A,B,C $(A \cup B) \cup C=A \cup(B \cup C)$	2	CO1

d)	For two matrix A and B $(A-B)^{\prime}=A^{\prime} * B^{\prime}$	2	CO1
e)	Derivative of a^{x} is also a^{x} where a is constant.	2	CO1
SECTION B			
Q 3	Compute $3 A^{2}+4 A^{\prime}-7 I$ Where I is unit matrix and $A=\left[\begin{array}{ccc} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 1 & -2 & 0 \end{array}\right]$	5	CO1
Q4	Among the 30 students of a class, 25 passed in mathematics and 23 passed in economics. If 30 students failed in both, how many students passed in both the subject.	5	CO2
Q5	Find the inverse of the matrix $A=\left[\begin{array}{ccc} 3 & -1 & -2 \\ 2 & -1 & 3 \\ -1 & 0 & 2 \end{array}\right]$	5	CO1
Q6	Vinayak saved ₹ 1000 in the first years and in each year after the first he saved 1% more than he did in the preceding year. How much did he save in the $10^{\text {th }}$ year?	5	CO 2
SECTION-C			
Q 7	Find the integration of the following function $\frac{(\log x)^{2}}{x}$	6	CO1

Q8	Find the maximum and minimum value of the function. $y=2 x^{3}-24 x+47$	6	$\underset{\sim}{\text { CO1, }}$
Q9	Find the point of inflexion on the curve and determine at that point curve changes from convex to concave (Type-I) or concave to convex(Type-II). $y=20+5 x+12 x^{2}-2 x^{3}$	6	$\begin{gathered} \mathrm{CO} 1, \\ \mathrm{CO} 2 \end{gathered}$
Q10	Evaluate $\int \frac{(2 x+1)}{\sqrt{2 x^{2}+2 x+1}} d x$	6	C01,
Q11	Evaluate following using integration by part $\int x^{2} e^{x} d x$	6	C01,
Q12	Evaluate $\int_{1}^{2} x \log x d x$	6	C01,
SECTION-D			
Q13	The prices, in rupees per unit, of the three commodities X, Y and Z are x, y and z respectively. A purchases 4 units of Z and sells 3 units of X and 5 units of Y. B purchases 3 units of Y and sells 2 units of X and 1 unit of Z. C purchases 1 unit of X and sells 4 units of Y and 6 units of Z. In the process A, B and C earn ₹ 6000,5000 and 13000 respectively. Using matrices, find the prices of the three commodities.	10	$\begin{gathered} \mathrm{CO} 2, \\ \mathrm{CO}, \\ \mathrm{CO} 4 \end{gathered}$

Q14	The total revenue received from the sale of x units of a product is given by $R(x)=600 x-\frac{x^{2}}{25}$ Find (a) The average revenue function (b) The marginal revenue function and Marginal revenue, when $x=25$ (c) Actual revenue from the sale of $26^{\text {th }}$ unit.	10	$\begin{aligned} & \mathrm{CO} 2, \\ & \mathrm{CO}, \\ & \mathrm{CO} 4 \end{aligned}$
Q15	The total cost function of a manufacturing firm is given by $C=\frac{1}{3} x^{3}-5 x^{2}+28 x+10$ Find the output at which the marginal cost is minimum.	10	$\begin{aligned} & \mathrm{CO} 2, \\ & \mathrm{CO}, \\ & \mathrm{CO4} \end{aligned}$
Q16	A company suffers a loss of ₹48, if its products do not sell at all. Marginal revenue and marginal cost function for the product are given by $M R=20-4 x \text { and } M C=-10+2 x$ Determine (i) Profit function (ii) Break-even point (iii) Total Profit at Break-even Point	10	$\begin{gathered} \mathrm{CO} 2, \\ \mathrm{CO3} \\ \mathrm{CO4} \end{gathered}$

Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018			
Cours Progra Time: Instru answe	Business Mathematics me: BBA(DM/AM/FT/AIS/Core/E-Bus) Semester: I hrs. Max. Marks: ans: Section A and B all questions are compulsory. Answer any five question in se any three questions in section D.	100 tion C	
SECTION A			
S. No.		Marks	CO
Q 1	Fill in the blanks:	10	
a)	$\int_{2}^{2}\left(x^{3}-x^{2}+\frac{5}{x^{2}}\right)=\square$	2	CO1
b)	If production is ___ then loss is equal to fixed cost.	2	CO1
c)	Relationship between Price and quantity demanded is called___	2	CO1
d)	\qquad Is also called \qquad function	2	CO1
e)	If for any function at $\mathrm{x}=\mathrm{c}$, first derivative is zero and second derivative is positive then at $x=c$ function will have its \qquad value.	2	CO1
Q2	State with reasons which of the following statements is true or false:	10	CO1
a)	Matrix inverse exist only when determinant is zero.	2	CO1
b)	Sum of following series is 216 $-\frac{1}{4}+\frac{1}{2}-1+2-4+8 \ldots \ldots \ldots \infty$	2	CO1

c)	For given sets A,B,C $(A \cup B) \cap C=A \cup(B \cap C)$	2	CO1
d)	For two matrix A and B $(A-B)^{\prime}=A^{\prime} / B^{\prime}$	2	CO1
e)	Derivative of a^{x} is also $a^{x} / \log x$ where a is constant.	2	CO1
SECTION B			
Q 3	Compute $5 A^{2}-3 A^{\prime}+7 I$ Where I is unit matrix and $A=\left[\begin{array}{ccc} -1 & 0 & 2 \\ 0 & 1 & -2 \\ -1 & 2 & 0 \end{array}\right]$	5	CO1
Q4	Among the 450 students of a class, 200 passed in mathematics and 300 passed in economics. If 30 students failed in both, how many students passed in both the subject.	5	CO2
Q5	Find the inverse of the matrix $A=\left[\begin{array}{ccc} 3 & 2 & 1 \\ 0 & 1 & 2 \\ -2 & 1 & -1 \end{array}\right]$	5	CO1
Q6	A firm produced 2000 sets of T.V. during its first year. The total sets produced at the end of 5 years is 14000 .Estimate the annual rate of increase in production if the increase in each year in uniform.	5	CO2
SECTION-C			
Q 7	Find the derivative of the following function $\frac{x^{2}+3 x+1}{x^{2}-x+1}$	6	CO1

Q8	Find the maximum and minimum value of the function $y=\frac{1}{3} x^{3}-2 x^{2}+3 x+1$	6	$\begin{gathered} \mathrm{CO1}, \\ \mathrm{CO} 2 \end{gathered}$
Q9	Find the point of inflexion on the curve and determine at that point curve changes from convex to concave (Type-I) or concave to convex(Type-II). $y=x^{4}-6 x^{2}+8 x-1$	6	$\begin{gathered} \mathrm{CO1}, \\ \mathrm{CO} \end{gathered}$
Q10	Evaluate $\int(x+2) \sqrt{2 x^{2}+2 x+1} d x$	6	C01,
Q11	Evaluate following using integration by part $\int\left(2 x^{3}-x^{2}\right)\left(6 x^{2}-25\right) d x$	6	C01,
Q12	Using Properties of definite integral prove that $\begin{aligned} \int_{-1}^{1}\left(x^{3}-5 x\right) d x & +\int_{-2}^{2}\left(16 x^{2}-3 x^{4}\right) d x \\ = & 2 \int_{0}^{2}\left(16 x^{2}-3 x^{4}\right) d x-\int_{-3}^{3}\left(12 x^{3}-5 x\right) d x \end{aligned}$	6	C01,
SECTION-D			
Q13	A salesman has the following record of sales during three months for three items which have different rate of commission. Using Matrix methods find out the rate of commission of items \mathbf{A}, \mathbf{B}, and \mathbf{C}.	10	$\begin{aligned} & \mathrm{CO} 2, \\ & \mathrm{CO} 3 \\ & \mathrm{CO} \end{aligned}$

Q14	1) The total revenue received from the sale of x units of a product is given by $R(x)=200 x-\frac{x^{2}}{5}$ Find (a) The average revenue function (b) The marginal revenue function and Marginal revenue, when $x=20$ (c) Actual revenue from the sale of $21^{\text {st }}$ unit.	10	$\begin{aligned} & \mathrm{CO} 2 \\ & \mathrm{CO}, \\ & \mathrm{CO} 4 \end{aligned}$
Q15	XYZ Ltd. find that the cost of production of one unit is $₹\left(\frac{x}{3}-10\right)$ and the fixed cost is ₹ 300 . Calculate the output at which the cost is minimum. Also calculate average cost and marginal cost at that output.	10	$\begin{aligned} & \mathrm{CO} 2, \\ & \mathrm{CO}, \\ & \mathrm{CO} 4 \end{aligned}$
Q16	If, MC is marginal cost and MR is marginal revenue and $M C=20+\frac{x}{30}, \text { and } M R=35$ The fixed cost is 2500 , determine the maximum profit and profit maximising level output.	10	$\begin{aligned} & \mathrm{CO} 2, \\ & \mathrm{CO}, \\ & \mathrm{CO} \end{aligned}$

