Name:

Enrolment No:

UNIVERSITY OF PETROLEUM & ENERGY STUDIES

DEHRADUN

End Semester Examination-Dec 2018

Program/course : MBA OG Semester : III
Subject : Econometrics Max. Marks : 100
Code : MBCE702 Duration : 3 Hrs

MS

30486.7939

33 705.190821

No. of page/s : 8

Source

Model

Residual

Section A (attempt all)

Number of obs = F(2, 33) = Prob > F =

R-squared

0.0000

0.7238

Q1. Fill the blank using the regression result given below:

SS

60973.5878

23271.2971

df

2

	Total	84244.8849	35 2406	. 99671		Adj R-squared Root MSE	= 0.7070 = 26.555		
	ос	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]		
	gdp fdi _cons	3.53503 42.99946 37.92905	2.231181 5.139897 14.1927	1.58 8.37 2.67	0.123 0.000 0.012	-1.004342 32.54226 9.053785	8.074401 53.45666 66.80432		
i.	\mathbb{R}^2	=				·		[2]	CO1
ii.	ES	S =				·		[2]	CO1
iii.	Dej	pendent variab	le is			·		[2]	CO1
iv.	RS	S =				·		[2]	CO1
V.	P-v	value for F =				·		[2]	CO1
vi.		mber of signifi						[2]	CO1
vii.	Ad	justed $R^2 = $						[2]	CO1
viii.	TS	S =				·		[2]	CO1
ix.	De	gree of freedon	n for RSS =			·		[2]	CO1

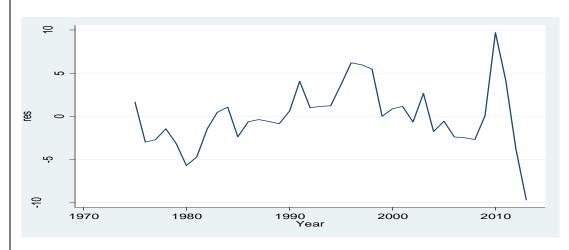
X.	Intercept of	the model =			·			[2]	CO1
	Answer any fou	ır questions		CTION B					
Q2.	The regression result of Natural Gas Production (GP) is given below. State which								
	explanatory variables are statistically and significantly affecting GP.								
		GP	Coef.	Std. Err.	t	P> t			
		GDPP DCF EIM FDIP GCFR IVAR _cons	0156572 .4852146 1.44941 7732869 .0577847 .2376649 -19.63859	.0127679 .1718355 .3663004 1.427769 .0779678 .2601368 4.848213	-1.23 2.82 3.96 -0.54 0.74 0.91 -4.05	0. 229 0. 008 0. 000 0. 592 0. 464 0. 368 0. 000		[5]	CO3, CO4
Q3.	From the regress	sion result o	of crude oil p	roduction fu	nction, p-	values are gi	ven below.		
	Prepare a table as given below and state at what level independent variables are						iables are		
	affecting crude oil production significantly.								
	Crude Oil Production			p > t	Level of	f Sig.			
	Price of Crude Oil			0.001					
	Per Capita GDP			0.002				[5]	CO3, CO4
	Refinery Throughputs			0.052					
	Proved Reserves of Crude Oil			0.345					
	Population			0.124					
	Carbon Emission			0.564					
Q4.	4. Formulate one crude oil import function, write down its functional form and econometric specification for the following variables:						d		
	Qm : Amount of crude oil imported Y : Gross Domestic Product P : Price of Crude Oil						[5]	CO3, CO4	

	GDPP _cons	Coef. .0224264 -1.444897	Std. Err. .0010231 .8098442	t 21.92 -1.78	P> t 0.000 0.082	[95% Conf. .0203603 -3.08041	Interval] .0244925 .190617	[5]	CO3,
	Aı	est the hypothes and why? terpret β_1 and β	·	= 0 again	nst H_1 : eta_2 5	≠ 0. Which test	do you use?		
Q 6.		VA table of on	•	_		V.			
	I ne ci	SOURCE	$\frac{F(6, 25)=2.49}{SS}$	$\frac{004 \text{ and } \alpha}{D}$		MSS			
		MODEL	2513371	6					
		RESIDUAL							CO2
		TOTAL	2549153	31	1			[5]	CO3,
	Compute (i) RSS (ii) Degree of freedom for RSS, (iii) Mean sum of squares, (ii) F and (iii) state the overall significance of the model.								
	Answer any two questions SECTION C 2 X 15 = 30								1
7.	equivalent (GP), Donnet (% of Gross cap	In the following multiple regression result, Gas Production – tonnes (Million tonnes oil equivalent) (GP) is estimated using factors such as GDP per capita (constant 2010 US\$) (GP), Domestic credit provided by financial sector (% of GDP) (DCF), Energy imports, net (% of energy use) (EIM), Foreign direct investment, net inflows (% of GDP) (FDIP), Gross capital formation (annual % growth) (GCFR), and Industry, value added (annual % growth) (IVAR).						[15]	CO1, CO4

	Source	SS	df MS		Number of obs			
	Model Residual	5564.44289	6 927.407148			0.0000		
	Total	487.629289 6052.07218	32 15.2384153 38 159.265057		R-squared : Adj R-squared : Root MSE :	= 0.9194 = 0.9043 = 3.9036		
	Total	0032.0/218	36 133.203037		ROOL MSE	= 3.9030		
	GP	Coef. S	td. Err. t	P> t	[95% Conf. :	Interval]		
	GDPP DCF	.4852146 .	0127679 -1.23 1718355 2.82	0.229 0.008	0416646 .1351971	.0103502 .8352321		
	EIM FDIP	7732869 1	3663004 3.96 .427769 -0.54	0.000 0.592	.7032801 -3.681557	2.195539 2.134983		
	GCFR IVAR	.2376649 .	0779678 0.74 2601368 0.91	0.464 0.368	1010305 2922164	.2165998		
	_cons	-19.63859 4	.848213 -4.05	0.000	-29. 51408	-9.763103		
	(:) Ind.							
		-	ope coefficients					
	(ii) Inte	erpret intercept	, (iii) Interpret R ²	, (iv) Test	joint hypothesi	S.		
Q8.	State and expla	in first five as	sumption of class	ical linear	regression mod	del.	[15	[5] CO3,
	,		r		8			CO4
Q9.	Oil consumption	on (oc) is estim	nated using crude	oil price (p), crude oil im	port (im), c	rude [15	
	oil export (ex),	per capita GD	P (pgdp) and carb	on emissi	on (co2).			CO4
	Multiple Regre	ession Results						
	Source	SS	df MS		Number of obs		1	
	Model Residual				F(5, 29) Prob > F R-squared	= 0.0000 = 0.9846		
	Total	8062413.37	34 237129.80	5	Adj R-squared Root MSE	= 0.9820 = 65.387		
	oc	Coef.	Std. Err. t	t P> t	[95% Conf.	Interval]		
	p		.8662552 -4.4 .0466814 13.3			-2.06295 .7207655		
	ex pgdp	1236515	.0271815 -4.1	55 0.000	1792438	0680591 . 0100701		
	co2 _cons	1.122187	.2407524 4.0 161.3615 6.0	66 0.000	. 6297929	1.614581 1398.645		
]	
1	– -			·	C	$\langle DCCC \rangle = 1$	ĺ	
	•	•	m of square (ESS		•	(RSS) and		
	•	•	m of square (ESS) of square (TSS)= l		•	(RSS) and		
	show th	nat Total sum c	• ,	ESS+ RSS	J.	(RSS) and		
	show the (b) Which	nat Total sum o	of square (TSS)= l	ESS+ RSS	sis testing?			
	show the sho	nat Total sum o	of square (TSS)= lese to do individuating of all the exp	ESS+ RSS	sis testing?			
	show the sho	nat Total sum of test will you us hypotheses tes	of square (TSS)= lese to do individuating of all the exp	ESS+ RSS	sis testing?			
	show the sho	nat Total sum of test will you us hypotheses tes	of square (TSS)= lese to do individuating of all the exp	ESS+ RSS	sis testing?			

				Section D				
	Answer any o	ne question				1 X 30 = 30		
Q10.	Answer the qu	[30]	CO1, CO3,					
	Source	SS	df	MS		Number of obs = 39 F(6, 32) = 60.86		CO4
	Model Residual	5564.44289 487.629289		. 407148 2384153		Prob > F = 0.0000 R-squared = 0.9194		
	Total	6052.07218	38 159	9. 265057		Adj R-squared = 0.9043 Root MSE = 3.9036		
	GP	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]		
	GDPP DCF EIM FDIP GCFR IVAR _cons	0156572 .4852146 1.44941 7732869 .0577847 .2376649 -19.63859	.0127679 .1718355 .3663004 1.427769 .0779678 .2601368 4.848213	-1.23 2.82 3.96 -0.54 0.74 0.91 -4.05	0. 229 0. 008 0. 000 0. 592 0. 464 0. 368 0. 000	0416646 .0103502 .1351971 .8352321 .7032801 2.195539 -3. 681557 2.134983 1010305 .2165998 2922164 .7675462 -29. 51408 -9. 763103		
		interpret the i				llowing post estimation		
	-10 -5-	10	20 Fitted va	lues	30	40		

Breusch-Pagan / Cook-Weisberg test


```
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of GP

chi2(1) = 7.82
Prob > chi2 = 0.0052
```

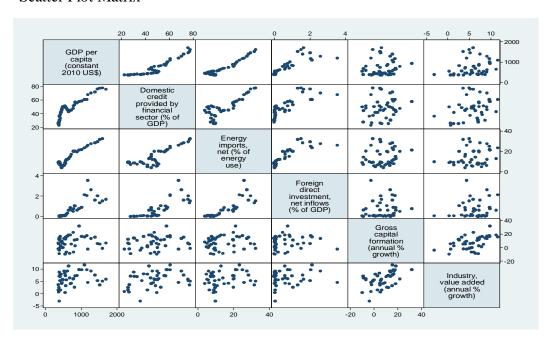
AUTOCORRELATION

(ii) Identify the presence of autocorrelation from the following post estimation results and interpret the results.

Graphical Method

Durbin's Alternative Test

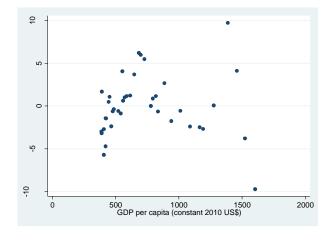
Durbin's alternative test for autocorrelation							
lags(p)	chi2	df	Prob > chi2				
1	17.228	1	0.0000				
HO: no serial correlation							

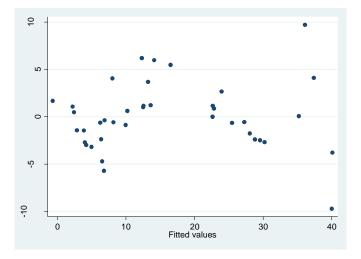

Breusch-Godfrey LM test

Breusch-Godfrey LM test for autocorrelation						
lags(p) chi2 df Prob > chi2						
1	13.931	1	0.0002			
HO: no serial correlation						

MULTICOLLINEARITY

(iii) Identify the presence of multicollinearity from the following post estimation results and interpret the results.


Scatter Plot Matrix


Correlation Matrix

	GDPP	DCF	EIM	FDIP	GCFR	IVAR
GDPP DCF EIM FDIP	1.0000 0.9306 0.9644 0.8412	1.0000 0.8410 0.7690	1.0000 0.8407	1.0000		
GCFR IVAR	0.1371 0.1580	0.0911 0.0942	0.1562 0.1380	0.0940 0.1845	1.0000 0.5131	1.0000

Residual vs Explanatory Variables-I

Residual vs Fitted

Variance Inflation Factor (VIF) and Tolerance(TOL)

Variable	VIF	1/VIF
GDPP EIM DCF FDIP IVAR GCFR	50.88 24.32 12.06 3.72 1.51 1.42	0.019655 0.041125 0.082911 0.268737 0.660841 0.701826
Mean VIF	15.65	