## **Model Question Paper -I**

|  |  | _ |
|--|--|---|
|  |  |   |



## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018

**Course: Econometrics** 

Name:

**Enrolment No:** 

Programme: MBA (IB/PSM)

Time: 03 hrs.

Instructions:

Section A carries 20 marks. Section B carries 50 marks. Attempt any five in Section B Section C carries 30

| Sec | tion A                                                                                                                                                           |      |                     |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------|
| 1.  | Stochastic Disturbance                                                                                                                                           |      |                     |
| 1.  | Stochastic Disturbance                                                                                                                                           | [5]  | CO1                 |
| 2.  | Conditional Expected Value                                                                                                                                       | [5]  | CO1                 |
| 3.  | Standard Error of an Estimate                                                                                                                                    | [5]  | CO2                 |
| 4.  | Degree of freedom.                                                                                                                                               | [5]  | CO3                 |
| Sec | tion B ( Attempt Any Five )                                                                                                                                      |      |                     |
| 1.  | How does an Econometrician proceed in their analysis of an economic problem? Explain                                                                             | [10] | CO3                 |
|     | the complete methodology?                                                                                                                                        |      |                     |
| 2.  | Explain Population Regressions Function (PRF) and Sample Regression Function (SRF) with the help of a graph.                                                     | [10] | CO1,C<br>O2,CO<br>3 |
| 3.  | Explain the assumptions Underlying Classical Linear Regression Model.                                                                                            | [10] | CO1,C<br>O2         |
| 4.  | Explain the characteristic of Normal Distribution. Discuss the similarities and differences from Standard Normal Distribution?                                   | [10] | CO1,C<br>O2,C0<br>3 |
| 5.  | What is Hypothesis testing? Explain the procedure for testing a Hypothesis.                                                                                      | [10] | CO1,C<br>O2         |
| 6.  | Indian Management Association wishes to have information on the mean income of middle managers in the retail industry. A random sample of 256 managers reveals a | [10] | CO1,C<br>O2,CO<br>3 |

|      | sample mean of \$                          | 45,420. The sta              | ndard deviation  | n of this population is \$2,050. The   |      |            |
|------|--------------------------------------------|------------------------------|------------------|----------------------------------------|------|------------|
|      | Association woul                           | d like to have a             | nswers to the fo | ollowing question:                     |      |            |
|      | What is the reasonstastic to be 1.965      | •                            | values or interv | al for the population mean given the Z |      |            |
| Sect | ion C ( Each sub p                         | part of question             | 1 1 carries 10 1 | marks)                                 |      |            |
| 1.   |                                            | =                            |                  | (Y) and the number of sales calls (X). | [30] | CO1,C      |
|      | The basic empiric                          | al theory tells u            | is, that among   | many variables, the number of copiers  |      | O2,C0<br>3 |
|      | sold is a function                         | of the number of             | of sales calls m | ade.                                   |      |            |
|      | Let us assume a r $Y = \beta 1 + \beta 2X$ | nathematical re <sub>l</sub> | presentation of  | the above relation to be:-             |      |            |
|      |                                            |                              |                  |                                        |      |            |
|      | Where number of dependent variable         |                              | s an independe   | ent variable and copiers sold (Y) is a |      |            |
|      |                                            |                              |                  |                                        |      |            |
|      |                                            | X                            | Y                |                                        |      |            |
|      |                                            | 20                           | 40               | _                                      |      |            |
|      |                                            | 40                           | 60               | -                                      |      |            |
|      |                                            | 40                           | 80               | _                                      |      |            |
|      |                                            | 50                           | 100              | -                                      |      |            |
|      |                                            | 60                           | 130              | _                                      |      |            |
|      |                                            | 60                           | 140              |                                        |      |            |
|      |                                            | 70                           | 140              | -                                      |      |            |
|      |                                            | 30                           | 150              | -                                      |      |            |
|      |                                            | 70                           | 170              | -                                      |      |            |
|      |                                            | 65                           | 170              | -                                      |      |            |
|      |                                            |                              |                  | J                                      |      |            |
|      |                                            |                              |                  |                                        |      |            |

| a) Calculate The Slope ( $\beta 2$ ) and the Intercept ( $\beta 1$ ) of the above equation and |  |
|------------------------------------------------------------------------------------------------|--|
| interpret the result.                                                                          |  |
| b) Calculate Standard Errors (SE) of Estimates ( $\beta 2$ and $\beta 1$ )                     |  |
| c) Draw out the differences between correlation and regression.                                |  |

## **Model Question Paper -II**

## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018

**Course: Econometrics** 

Programme: MBA (IB/PSM)

Time: 03 hrs.

Instructions:

Section A carries 20 marks. Section B carries 50 marks. Attempt any five in Section B. Section C carries 30

marks.

| Sec | tion A                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                     |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------|
| 1.  | Interval Estimators                                                                                                                                                                                                                                                                                                                                                                                                                           | [5]  | CO1                 |
| 2.  | Total Sum of Squares                                                                                                                                                                                                                                                                                                                                                                                                                          | [5]  | CO1                 |
| 3.  | Confidence Interval                                                                                                                                                                                                                                                                                                                                                                                                                           | [5]  | CO2                 |
| 4.  | Heteroscedasticity                                                                                                                                                                                                                                                                                                                                                                                                                            | [5]  | CO3                 |
| Sec | tion B ( Attempt Any Five )                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                     |
| 1.  | Explain the significance of stochastic disturbance term                                                                                                                                                                                                                                                                                                                                                                                       | [10] | CO3                 |
| 2.  | Explain the assumptions Underlying Classical Linear Regression Model.                                                                                                                                                                                                                                                                                                                                                                         | [10] | CO1,C<br>O2         |
| 3.  | Following is the data of number of copiers sold (Y) and the number of sales calls (X). The basic empirical theory tells us, that among many variables, the number of copiers sold is a function of the number of sales calls made. Let us assume a mathematical representation of the above relation to be:- $Y = \beta 1 + \beta 2X$ Where number of sales calls(X) is an independent variable and copiers sold (Y) is a dependent variable. | [10] | CO1,C<br>O2,<br>CO3 |

|            | X                                                                                                                                                                                                     | Y                               |                       |      |                     |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------|------|---------------------|
|            | 10                                                                                                                                                                                                    | 4                               |                       |      |                     |
|            | 20                                                                                                                                                                                                    | 6                               |                       |      |                     |
|            | 30                                                                                                                                                                                                    | 8                               |                       |      |                     |
|            | 40                                                                                                                                                                                                    | 10                              |                       |      |                     |
|            | 50                                                                                                                                                                                                    | 13                              |                       |      |                     |
|            | 60                                                                                                                                                                                                    | 14                              |                       |      |                     |
| 4.         |                                                                                                                                                                                                       |                                 |                       | [10] | CO1,C<br>O2,C0<br>3 |
| 5.         | What is Hypothesis testing? Explain                                                                                                                                                                   | the procedure for testing a Hy  | ypothesis.            | [10] | CO1,C<br>O2         |
| 6.         | How does an Econometrician procee the complete methodology?                                                                                                                                           | d in their analysis of an econo | omic problem? Explain | [10] | CO1,C<br>O2,CO<br>3 |
|            | ion C ( Each sub part of question 1 o                                                                                                                                                                 | <u> </u>                        | anla of 2 Cabaala At  | [30] | CO1 C               |
| Sect<br>1. | The following data are the semester                                                                                                                                                                   | tuition fees (Rs000) for a san  | ipie oi 3 Schools. At |      | CO1,C               |
|            | The following data are the semester the .05 significance level, can we confor the three mentioned colleges?  Critical F value for .05 significance level, can we confor the three mentioned colleges? | nclude there is a difference in | •                     | [30] | O2,C0<br>3          |

| 10 | 8  | 7 |  |
|----|----|---|--|
| 11 | 9  | 8 |  |
| 12 | 10 | 6 |  |
| 10 | 8  | 7 |  |
| 12 |    | 6 |  |

b) Develop an ANOVA table. What is the value of test statistic?

c) What is your decision regarding the null hypotheses.