Name: Enrolment No:												
	UNIVERSITY OF PETROLEUM & ENERGY STUDIES											
DEHRADUN End Semester Examination- Dec 2018												
End Semester Examination- Dec 2018Program/course: MA Economics (Energy Economics)Semester: ISubject: QUANTITIVE METHODS IN ECONOMICSMax. Marks: 1Code: ECON 7002Duration: 3No. of page/s: 3												
01. F	ill in the bla	nks	Section A	A (attempt a	all)							
i.		and $P = 20-Q$	Q , then $\frac{dR}{dQ}$ =	=			[2]	CO1				
ii.	$\frac{d}{dx} \left[\frac{z(x)}{v(x)} \right] =$	=	·				[2]	CO1				
iii.	$\frac{dR}{dL} = \frac{dR}{dQ} \cdot \underline{\qquad}$						[2]	CO1				
iv.	iv. If $Q = 96K^{0.2} L^{0.8}$ then $MPP_K =$						[2]	CO1				
v.	Let $y = f(x_1, x_2)$. Then the total differential, $dy =$						[2]	CO1				
Q2.	Q2. Prepare a table given below and classify the following differential equations by marking tick ($$) in appropriate box.											
	DE No.	Equation	Ordinary	Partial	Linear	Nonlinear	[2]	CO1				
	i.	$y' + xy = e^x$					[2]	CO1				
	ii.	y'' + yy' = x					[2]	CO1				
	iii.	$x2y^{"'} - \sqrt{xy} = 0$					[2]	CO1				
	iv.	$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = x^2 y$					[2]	CO1				
	V.	$\frac{\partial^2 u}{\partial x^2} + \frac{\partial u}{\partial x} + uy = 0$					[2]	CO1				

	SECTION B Answer any four questions		
Q3.	Find total differentials for the following utility functions: a. $U(x_1, x_2) = ax_1 + bx_2$ b. $U(x_1, x_2) = x_1^2 + x_2^3 + x_1x_2$ c. $U(x_1, x_2) = x_1^a x_2^b$	[5]	CO3, CO4
Q4.	For each $F(x,y,z) = 0$ use the implicit function rule to find $\partial y / \partial x$ and $\partial y / \partial z$. (a) $F(x,y,z) = x^3y^4 + z^3 + xyz = 0$ (b) $F(x,y,z) = 3x^2y^2 + xz^3y^2 + y^3zx^3 + y^2z = 0$		CO3, CO4
Q5.	Find the total differential, given, $U = \frac{G_1}{G_1 + G_2}$		CO3, CO4
Q6.	 Answer any one question. i. Find general solution of the differential equation: dy/dt + 2ty = t ii. Given Q=200-5P+0.05Y, where, Q is quantity demanded, P is price, and Y is income, and given P= 50 and Y= 10000, find the price and income elasticity of demand. 	[5]	CO3, CO4
Q7.	 Answer any one question. i. If the marginal propensity to save (MPS) is the following function of income, S'(Y) = 0.3 - 0.1Y^{-0.5}, and if the aggregate saving S is nil when income Y is 81 find the saving function S(Y). ii. Find the elasticity (E_d) if the demand function is: Q=250-5P. Determine whether the demand is elastic at P = 20. 	[5]	CO3, CO4
	SECTION C Answer any two questions		1
Q8.	Verify that each of the following differential equations is exact and solve by the four step procedure: (a) $3y^2tdy + (y^3 + 2t)dt = 0$ (b) $t(1+2y)dy + (y^3 + 2t)dt = 0$	[15]	CO1, CO4

Q9.	Find the partial total derivatives $\frac{\delta w}{\delta u}$ and $\frac{\delta w}{\delta v}$ if $w = ax^2 + bxy + cu$, where $x = \alpha u + \beta v$	[15]	
			CO3,
	and $y = \gamma u$. (Use channel Map)		CO4
Q10.	Discuss the assumptions made in a linear programming problem. Find the graphical	[15]	СО3,
	solution for the following LPP?		CO4
	Maximize: $z = 6y_1 + 7y_2$ Subject to : $2y_1 + 3y_2 \le 12$		
	$2y_1 + 3y_2 \le 12$ $2y_1 + y_2 \le 18$		
	$(y_1, y_2) \ge 0$		
Q10.	What do you mean by comparative static analysis? Explain with example role of	[15]	СО3,
	differention in comparative static analysis.		CO4
	Section D		
	Answer any one question		
Q11.	Let the demand and supply be:		CO1,
	$Q_d = \alpha - \beta P - n \frac{dP}{dt}; Q_s = \delta P (\alpha, \beta, n, \delta > 0)$		CO3, CO4
	$\mathcal{L}_d \propto \mathcal{L} \qquad dt \qquad \mathcal{L}_s \qquad dt \qquad (\alpha, \beta, \eta, \sigma, \sigma, \sigma)$		
	(a) Assume that the market is cleared at every point of time, find the time path		
	P(t) (general solution)		
	(b) Does this market have a dynamically stable intertemporal equilibrium		
	price? Examine.		
Q12.	Using simplex method solve the following linear programming problem:		CO1,
	Maximize: $\pi = 6z_1 + 2z_2 + 5z_3$		CO3, CO4
	Subject to : $2z_1 + 3z_2 + z_3 \le 10$		001
	$z_1 + 2z_3 \le 8$		
	$z_1 + 2z_2 + 5z_3 \le 19$		
	$(z_1, z_2, z_3,) \ge 0$		
Q13.	A firm has the following total cost and demand functions:	[30]	CO1,
	$C = \frac{1}{3}Q^3 - 7Q^2 + 111Q + 50; Q = 100 - P$		CO3, CO4
	a. Does the total cost function satisfy the coefficient restrictions?		
	b. Write out total revenue function R in terms of Q.		
	c. Formulate the total profit function π in terms of Q.		
	d. Find profit maximization level of output Q^* .		
	e. What is the maximum profit?		