Name: Enrolment No:				1 UPES UNIVERSITY WITH A PURPOSE				
Program/course: MA Economics (Energy Economics) Semester $:$ I Subject: QUANTITIVE METHODS IN ECONOMICS Max. Marks $: \mathbf{1 0 0}$ Code : ECON 7002 Duration $: \mathbf{3 ~ H r s}$ No. of page/s: $\mathbf{3}$								
Q1. Fill in the blanks Section A (attempt all)								
i.	If $R=P Q \quad$ and $\quad P=20-Q$, then $\frac{d R}{d Q}=$						[2]	CO1
ii.	$\frac{d}{d x}\left[\frac{z(x)}{v(x)}\right]$	L					[2]	CO1
iii.	$\frac{d R}{d L}=$.					[2]	CO1
iv.	If $\mathrm{Q}=96 \mathrm{~K}^{0.2} \mathrm{~L}^{0.8}$ then $M P P_{K}=\square$.						[2]	CO1
v.	Let $\mathrm{y}=f\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$. Then the total differential, $d y=$						[2]	CO1
Q2.	Prepare a table given below and classify the following differential equations by marking tick $(\sqrt{ })$ in appropriate box.							
	DE No.	Equation	Ordinary	Partial	Linear	Nonlinear	[2]	CO1
	i.	$y^{\prime}+x y=e^{x}$					[2]	CO1
	ii.	$y^{\prime \prime}+y y^{\prime}=x$					[2]	CO1
	iii.	$x 2 y^{\prime \prime \prime}-\sqrt{x y}=0$					[2]	CO1
	iv.	$x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=x^{2} y$					[2]	C01
	v.	$\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial u}{\partial x}+u y=0$					[2]	C01

Q9.	Find the partial total derivatives $\frac{\delta w}{\delta u}$ and $\frac{\delta w}{\delta v}$ if $w=a x^{2}+b x y+c u$, where $x=\alpha u+\beta v$ and $y=\gamma u$. (Use channel Map)	[15]	$\begin{aligned} & \mathrm{CO3} \\ & \mathrm{CO} 4 \end{aligned}$
Q10.	Discuss the assumptions made in a linear programming problem. Find the graphical solution for the following LPP? $\begin{array}{cc} \text { Maximize: } & z=6 y_{1}+7 y_{2} \\ \text { Subject to : } & 2 y_{1}+3 y_{2} \leq 12 \\ & 2 y_{1}+y_{2} \leq 18 \\ & \left(y_{1}, y_{2}\right) \geq 0 \\ \hline \end{array}$	[15]	$\begin{aligned} & \text { CO3, } \\ & \text { CO4 } \end{aligned}$
Q10.	What do you mean by comparative static analysis? Explain with example role of differention in comparative static analysis.	[15]	$\underset{\mathrm{COS}}{\mathrm{CO},}$
	Section D Answer any one question		
Q11.	Let the demand and supply be: $Q_{d}=\alpha-\beta P-n \frac{d P}{d t} ; \quad Q_{s}=\delta P \quad(\alpha, \beta, n, \delta>0)$ (a) Assume that the market is cleared at every point of time, find the time path $\mathrm{P}(\mathrm{t})$ (general solution) (b) Does this market have a dynamically stable intertemporal equilibrium price? Examine.	[30]	$\begin{aligned} & \mathrm{CO1} \\ & \mathrm{CO3} \\ & \mathrm{CO4} \end{aligned}$
Q12.	Using simplex method solve the following linear programming problem: $\begin{array}{lc} \text { Maximize: } & \pi=6 z_{1}+2 z_{2}+5 z_{3} \\ \text { Subject to : } & 2 z_{1}+3 z_{2}+z_{3} \leq 10 \\ z_{1}+2 z_{3} \leq 8 \\ & z_{1}+2 z_{2}+5 z_{3} \leq 19 \\ & \left(z_{1}, z_{2}, z_{3},\right) \geq 0 \end{array}$	[30]	$\begin{aligned} & \hline \mathrm{CO1}, \\ & \mathrm{CO3}, \\ & \mathrm{CO4} \end{aligned}$
Q13.	A firm has the following total cost and demand functions: $C=\frac{1}{3} Q^{3}-7 Q^{2}+111 Q+50 ; Q=100-P$ a. Does the total cost function satisfy the coefficient restrictions? b. Write out total revenue function R in terms of Q . c. Formulate the total profit function π in terms of Q . d. Find profit maximization level of output Q^{*}. e. What is the maximum profit?	[30]	$\begin{aligned} & \hline \mathrm{CO1}, \\ & \mathrm{CO3}, \\ & \mathrm{CO4} \end{aligned}$

