Roll No: -----

UNIVERSITY OF PETROLEUM & ENERGY STUDIES

End Semester Examination, December 2018

Program/course: MBA (OG) Semester – I
Subject: Fundamental of Petroleum Exploration
Code: OGOG7002 Max. Marks: 100
Duration: 3 Hrs.

No. of page/s: 2

Note: All sections are compulsory.

SECTION A $(5 \times 4 = 20 \text{ Marks})$							
Note: All Qu S. No.	estions are compulsory.	Marks	CO				
Q 1	What is the significance of a Geological Time Scale? Write in ascending order the following of the <i>Geological Eras</i> (increasing times) and their age in millions years. a. Mesozoic b. Paleozoic c. Cenozoic d. Proterozoic	5	CO1, CO2				
Q 2	Draw the <i>Rock Symbol</i> for each of the following rock types. a. Carbonate b. Volcanic c. Shale d. Conglomerate e. Granite	5	CO1, CO2				
Q 3	Draw the <i>Well Symbol</i> against each of the followings Well type. a. Abandoned b. Dry Well c. Gas Well d. Dry well with Oil Show e. Well Location	5	CO1, CO2				

Q 4	Kerogen varies in chemical composition, by weight percentage, within the following ranges (fill the gaps). a. Carbon b. Hydrogen c. Nitrogen d. Oxygen e. Sulfur	5	CO1, CO2
	SECTION B (5X4 = 20 Marks)		
	Note: Attempt any of the four questions and answer in brief		
Q 5	Describe the formation of sedimentary basins and Indian sedimentary basins classification with respect to petroleum exploration	5	CO4
Q 6	Describe the significance of petroleum reserves and resource and total world petroleum reserves estimated as on 2017	5	CO3, CO4
Q 7	Describe natural oil seeps and their significance in hydrocarbon exploration. How you distinguish natural oil seep from man-made sources such as oil tankers	5	CO2
Q 8	What are Strategic Petroleum reserves (SPR) and India's preparedness with respect to this?	5	CO3, CO4
Q 9	Describe the frontier areas of petroleum exploration and the present status petroleum production from deep-water basins in India.	5	CO3, CO4
	SECTION-C $(10x3 = 30 \text{ Marks})$ Note: Attempt any three questions		
Q 10	Describe the main petroleum system elements. Summarize the primary and secondary hydrocarbon migration processes	10	CO1, CO2
Q 11	Describe the <i>Production Sharing Contracts</i> (PSC) and explain the terms <i>Cost Oil</i> and <i>Profit Oil. Draw a model PSC contract</i> .	10	CO4, CO5
Q 12	What are geophysical, geochemical and geological methods for petroleum exploration?. Describe the importance of seismic 3D surveys	10	CO2, CO4
Q 13	What are the main characteristic of petroleum reservoirs? Describe various types of natural reservoir rocks	10	CO2
1	SECTION-D (10x3 = 30 Marks) Note: All questions are compulsory		
Q 14	Describe the main "Economic Indicators", of an economic model for, run over an oil and gas investment opportunity. Describe the "Decision Tree" analysis to make investment decision	10	CO4, CO5

values of using the Parameter A-Area H-Net In R-Reco (STB/a)	(acres) Pay (ft) overy factor c-ft)	ry to draw the to	rnado chart for th	ne three-parame	eter system, t	10	CO4, CO5
Q 16 Comple	Cash Flow (\$MM) 5% 10% 20% 1993 -450					10	CO4, CO5