Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES			
Course: Program Time: Instructi	End Semester Examination, December 2018 Operations Management MBA-AVM, PSM, Core (HR/Marketing/Finance/Operations) 03 Hrs. Answer all parts of a question in one place. Attend all sections.		
SECTION A			
S. No.		Marks	CO
Q 1	Answer all questions of this section.	20	1,2,3,4
(i)	In \qquad type of production, the products/services follow direct linear paths without backtracking or sidetracking. [Fill in the blank.]	1	1
(ii)	\qquad layout is suitable for production of various non-standard products in small quantities. [Fill in the blank.]	1	2
(iii)	\qquad layout is preferred by a firm manufacturing very large or bulky products? [Fill in the blank.]	1	2
(iv)	When we talk about Capacity Flexibility, it means the flexibility of \qquad [Plants/ Processes/ Workers/ All the above/ None of the above] [Select right option.]	1	2
(v)	MRP stands for: __. [Fill in the blank.]	1	3
(vi)	MPS stands for: __. [Fill in the blank.]	1	3
(vii)	Write the equation for EOQ and specify the components of it.	2	3
(viii)	The final form of listing of all raw materials, parts, sub-assemblies, and assemblies that go into an end item is a \qquad . [Fill in the blank.]	1	3
(ix)	\qquad is a chain of critical activities determining the duration of a project. [Fill in the blank.]	1	2
(x)	TPM stands for: __. [Fill in the blank.]	1	4
(xi)	QFD stands for: __. [Fill in the blank.]	1	4
(xii)	What is group technology? [Answer in 2-3 lines.]	2	1
(xiii)	CRAFT is a computerized technique for layout planning/location planning/ capacity planning/ forecasting. [Select the right alternative.]	1	2
(xiv)	Mention at least three wastes as are listed by TOYOTA's lean approach.	3	4
(xv)	During a particular week, the production of a plant was 80 units. If, its historic highest or best utilization recorded was 120 units per week. What is this plant's capacity utilization in the given week?	2	2

SECTION B										
Q	Answer any four questions in short.								20	
(i)	The suitable location of a cement plant is being identified. The prospective plant would receive raw materials from three lime stone mines. The coordinates and expected load transfer from the three mines M1, M2 and M3 are as under. Suggest the ideal plant (location).								5	2
(ii)	What type of layout is preferably adopted in a garment manufacturing factory and why?								5	2
(iii)	Discuss the various elements of inventory cost and their tradeoff for economic consideration.								5	3
(iv)	The monthly demand Forecast demand for a) Simple average b) 3 month moving c) 3 month weighte	for the Feb 80 January average a movin	nits m Mar 110 based avera	fact Apr 115 weig	are May 105 being	$\begin{array}{\|c\|} \hline \text { follows } \\ \hline \text { Jun } \\ \hline 110 \\ \hline \\ \hline .5,0.3 \end{array}$	$\begin{aligned} & \mathrm{Jul} \\ & \hline 125 \\ & \hline \end{aligned}$ $0.2)$	Aug 120	5	3
(v)	Discuss the various cost elements of quality.								5	4
SECTION-C										
Q	Answers with description and/or analysis, any three questions								30	
(i)	Describe the functions of materials management in detailed.								10	
(ii)	Answer both parts of the question: a) Three production processes, P1, P2 and P3 have the following cost structure (see table). Analyze and identify the cost eeficient process for producing 8,000 units? b) Write the mathematical expressions for calculating the standard time and its elements. An automobile service center takes 12 vehicles sequentially in hand on an average day. The average testing and maintenance servicing time per vehicle is 30 minutes. If, one hour personal allowance is given on an average 8 hours-day. Calculate the $\%$ of process allowance adopted in the organization.								10	2

(iii)	Describe different types of production and their suitable layouts.	10	2
(iv)	A company manufactures seasonal products. The information regarding the seasonal demand pattern, available production capacities during regular time, overtime and other details are as follows: Demand Forecast Other relevant data can be summarized as following: - Initial inventory $=200$ units - Final inventory $=25$ units - Regular time prodn. cost/ unit = Rs.125/- - Over time prodn. cost/unit $=$ Rs.150/- - Subcontracting cost/unit $=$ Rs.175/- - Inventory Carrying cost/unit/period = Rs.25/- Develop an aggregate capacity plan. [Mention the assumptions, if taken anywhere]	10	2
(v)	Answer both parts of the question a) In the following process map, the five boxes indicate the 5-stages of a production system. Respective processing times (in minutes) are mentioned below the boxes. 1) What is the cycle time in this production system? 2) What is the flow time of this production system? 3) Identify the bottleneck(s) and mention the impact on adjacent processes. b) Calculate the system availability, if in an equipment service system the service provider is capable of maintaining the 'mean time between failures (MTBF)' of 36 hrs . and 'mean time to repair (MTTR)' of 2 hrs .	10	2

SECTION-D

Q	Answer the case questions with a thorough reading and analysis.		
		$\begin{gathered} 15 \times 2= \\ 30 \end{gathered}$	1,2,3,4

