Name			
Enrol			
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019 se: Computer Vision (CSIP7003) (El - III) Semester: II ramme: M.Tech. (CSE)		
	: 03 hrs. Max. Marks: uctions: Attempt all questions. There are internal choices in Q. No. 9 and 11.	: 100	
	SECTION A		
Q 1	Differentiate between following:	4	CO1
	(a) Computer Vision and Image Processing (b) Convolution and Filtering		
Q 2	State the properties of Two-dimensional Discrete Fourier Transform (DFT). How Fast Fourier Transform (FFT) improves the efficiency over DFT?	4	CO1
Q 3	Define Stereo Vision. Discuss the underlying principles for depth sensors.	4	CO1, CO2
Q 4	The modern age computer-vision applications rely on pattern classification techniques rather than on deterministic techniques. Identify the reason.	4	CO2
	Discuss two classification techniques that use probabilistic approaches for pattern identification.		
Q 5	Define DC coefficient of the DFT. Differentiate between low pass and high pass filtering?	4	CO2
	SECTION B		
Q 6	Briefly explain following using suitable examples:	10	CO2
	(A) Histogram of Oriented Gradients (HOG)		
	(B) SURF features		
Q 7	Principal Component Analysis (PCA) is an important technique for dimension reduction. Justify the statement with a suitable example.	10	CO2
Q 8	Explain Fourier transform. Compute the Discrete Fourier Transform (DFT) for the following sequence 2, -3, 4, -5.	10	CO3
Q 9	Define Histogram Equalization clearly stating its advantage.	10	CO3
	2 3 3 2 4 2 4 3 3 2 3 5 2 4 2 4 Fig. 1 Fig. 1 Fig. 1		

	The image snippet given in Fig histogram corresponding to the equalization and draw the result	se g	gre	y le	evel	s, a						
					C	PR						
	Devise and explain an algorithm Execute the above algorithm up	10	CO4									
		0	0	0	0	0	0	0	0			
	_	0	1	1	1	0	0	0	0			
	_	0	1	0	1	0	0	0	0			
	_	0	0	0	1	0	1	1	0			
		0	1	1	0	0	1	1	0			
	-	0	1	1	0	0	0	0	0			
	-	0	0	0	0	0	0	0	0			
					Fig	g. 2]		
					Ş	SEC	CTI	ON	C			
Q 10	Assuming suitable scenario explain the following:											CO4
	(a) Background Subtraction tec											
	(b) Augmented Reality											
Q 11	Explain the following classifier	20	CO4, CO5									
	(a) KNN (b) Artificial Neur											
	OR											
		2	3			3	4		3		20	CO5
		3	2		3	13	12		2			
		4	3		2	12			2			
		3	2		3	12	12		4			
		2	2		3	15			4			
		3	3			4	3		3			
	Compare the edge-based and re following gray scale image usin merging as 'difference of neigh	. Consider the rule for										
	Fig. 3 ->											

Name:	nent No:							
Enrolı	Enrolment No:							
Progr Time:	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019 se: Computer Vision (CSIP7003) Semester: II amme: M.Tech. (CSE) 03 hrs. Max. Marks actions: Attempt all questions. There are internal choices in Q. No. 9 and 11.	: 100						
	SECTION A							
Q 1	 Fill up the blanks with most appropriate answer: (a) is an example of orthogonal transform. (b) A is an estimate of the probability distribution of a continuous variable. (c) Smooth and uniform areas in an image correspond to frequency components. (d) The size of a 640×480 image at 240 pixels per inch resolution is 	4	CO1					
Q 2	4	CO1						
Q 3	Q 3 Define Stereo Vision. Discuss the underlying principles for depth sensors.							
Q 4	Q 4 Discuss the following in brief: (a) Contrast Stretching (b) Canny Edge Detection							
Q 5	Explain K-means clustering algorithm in brief. Give one suitable application for it.	4	CO2					
	SECTION B							
Q 6	(a) State and discuss the Convolution theorem. (b) Show the impact on an image block given below in Fig. 1(a) if a filter mask shown in Fig. 1(b) is applied on central four pixels. $ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	5, 5	CO2					
Q 7	(a) Justify how we can remove the Salt and pepper, Gaussian, and Periodic noise from an intensity image. Can we apply a median filter to remove the Salt and pepper noise?	5, 5	CO3					

	(b) C		-	-	-		-						a 3×3	med	ian f	ilter	mask	can		
	remo	ve the	e Sal	t and	l pepj	per n	oise	in the		-	olock									
								(52									
										55	58									
								e		50	57									
]		g. 2										
Q 8	Elabo	Elaborate the following with examples:-																10	CO2	
	(A) Histogram of Oriented Gradients (HOG)																			
	(B) SIFT features																			
Q 9	The following table (Fig. 3) gives the number of pixels at each of the grey levels 0-15 in an image with those grey values only. Draw the histogram corresponding to these grey levels, and then perform a histogram equalization and draw the resulting histogram.																10	CO3		
		0	1	2	3	4	5	6	7	8	9	1 0	11	12	13	14	15			
		2 0	40	60	75	80	7 5	65	55	50	45	4 0	35	30	25	20	30			
									Fig	g. 3								1		
									C	DR										
	Write an algorithm to mark connected components within a region. Execute the algorithm so written over a small, example binary image.															10	CO4			
										SEC	ΤΙΟ	N C								
Q 10	Elabo	orate	the fo	ollov	ving	with	suita	ıble e	xam	ples:									20	CO4
	(a) Pr	rincip	oal Co	ompo	onent	: Ana	lysis	s (PC	A)		(b) k	KLT	Featu	re tra	acker					
Q 11	 (a) Write an algorithm to detect boundary pixels of a region. Consider 8-connectivity of the pixels. Apply the algorithm to detect the boundary pixels in the region given in the following image. 															12, 8	CO4			
							0	0	0	0	0	0	0							
							0	1	1	1	1	0	0							
							0	1	1	1	1	1	0							
							0	0	1	1	1	1	0							
							0	0	1	1	1	0	0							

(b) Define follo (I) m-adjacent	
Illustrate and exp statement – "The detecting four-w	CO5