Name: Enrolment No:			
Cours Progra Cours Instru	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019 Digital Electronics Semester: I : BCA Time: 03 hrs Code: ECEG 2016 Max. Mark 	100	
SECTION A			
S. No.		Marks	CO
Q 1	Differentiate the following (a) Level-triggered and Edge-triggered flip-flops (b) Asynchronous and Synchronous counter	4	CO3
Q 2	Find the Minterms and Maxterms for the following logical expression: $F=A+B \bar{C}+A B \bar{D}+A B C D$	4	CO2
Q 3	State and Prove DeMorgan's theorem. Simplify the following expression using boolean laws: $F=\prime \cdot A(A+B)+(B+A A)\left(A+\dot{B}^{\prime}\right)$	4	CO2
Q 4	Convert the following: (a) $(2598.675)_{10}$ to hexadecimal (b) $(10010.1011)_{2}$ to decimal (c) $(10111101.01101001)_{2}$ to octal (d) $(465.0647)_{8}$ to Binary	4	CO1
Q 5	Explain the operation of master-slave flip-flop and show how the race around condition is eliminated in it.	4	CO3
SECTION B			
Q 6	What do you understand by Universal gates? Design and Implement Ex-OR and Ex-NOR gates using NAND gate.	8	CO2
Q 7	Design and implement J-K flip-flop using S-R flip-flop.	8	CO3
Q 8	Simplify the expression $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma m(0,1,5,6,8,9,13,14)+\mathrm{d}(3,7,15)$ using K-map and implement the result using logic gates.	8	CO2
Q 9	Differentiate weighted \& non-weighted codes with suitable examples. Define even and odd parity code. Convert the following to Gray code and back to their equivalent binary code. (a) 10001110101 (b) 00101101110	8	CO1

Q10	Design a MOD-3 counter using J-K flip-flop.	8	CO3
SECTION-C			
Q 11	(a) Design a combinational circuit that accepts a 4-bit binary number and generates a output binary number equal to the 2 's complement of input number. (b) Implement the following function using 8×1 Multiplexer $\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma(1,3,4,11,12,13,14,15)$	[10+10]	CO2
Q 12	(a) Design a 4-bit synchronous down counter that counts through all states from 1111 down to 0000 . (b) Design a 4-bit Self-correcting Shift Counter using D flip-flop.	[10+10]	CO3

	(a) $(\mathrm{F} 3 \mathrm{~A} 7 \mathrm{C} 2)_{16}=(\mathrm{X})_{10}$ (b) $(2 \mathrm{AC} 5)_{16}=(\mathrm{X})_{8}$ (c) $(0.93)_{10}=(X)_{8}$ (d) $(4057.06)_{8}=(\mathrm{X})_{10}$		
Q 4	State and Prove Duality principle. Simplify the following expression using boolean laws: $F=(A+C)\left(A D+A D^{\prime}\right)+A C+C$	4	CO2
Q 5	Differentiate the following (a) Latch and Flip-Flop (b) Combinational and Sequential circuits	4	CO3
SECTION B			
Q 6	What do you understand by registers? Discuss with suitable logic diagram all the four configuration SISO, SIPO, PISO, PIPO of registers.	8	CO3
Q 7	Simplify the expression $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Pi M(1,3,5,8,9,11,14)+\mathrm{d}(2,7,10)$ using K-map and implement the result using logic gates.	8	CO2
Q 8	What are different types of error detecting and correcting codes. Explain with help of suitable example how the error can be detected and corrected.	8	CO1
Q 9	Design and implement D flip-flop using J-K flip-flop.	8	CO3
Q 10	What do you understand by Universal gates? Design and Implement Ex-OR and Ex-NOR gates using NOR gates.	8	CO2
SECTION-C			
Q 11	(a) Design a 4-bit Binary code to Gray code converter. (b) Differentiate multiplexer and demultiplexer. Implement the following boolean expression using a 8 X 1 multiplexer. $\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum(0,1,2,5,6,9,14)$	[10+10]	CO2
Q 12	(a) Design a synchronous BCD counter using J-K flip-flops. (b) Design a 4-bit unit distance Up-Down counter using D flip-flops.	[10+10]	CO3

