Name: Enrolment No:				
Cours Progr Cours Instru	\left.UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019 $\right)$ Semester: V			
SECTION A				
S. No.		Marks	CO	
Q 1	What do you understand by deterministic and probabilistic models?	4	CO1	
Q 2	What is degeneracy in transportation problems? How is it resolved?	4	CO3	
Q 3	How do you identify the presence of multiple optima in the simplex method?	4	CO1	
Q 4	Discuss the relevance and applications of inventory management in business situations. A chemical company produces two products, X and Y . Each unit of product X requires 3 hours on operation I and 4 hours on operation II, while each unit of product Y requires 4 hours on operation I and 5 hours on operation II. Total available time for operations I and II is 20 hours and 26 hours respectively. The production of each unit of product Y also results in two units of a by-product Z at no extra cost. Product X sells at profit of `\(10 /\) unit, while Y sells at profit of` $20 /$ unit. By-product Z brings a unit profit of ' 6 if sold; in case it cannot be sold, the destruction cost is `4/unit. Forecasts indicate that not more than 5 units of \(Z\) can be sold. Formulate the L.P. model to determine the quantities of X and Y to be produced, keeping Z in mind. & 4 & CO2 \\ \hline Q 5 & Discuss the relevance and applications of inventory management in business situations & 4 & CO4 \\ \hline \multicolumn{4}{\|c	}{SECTION B} \\ \hline Q 6 & A company sells two different products A and B. The company makes a profit of 40 and` 30 on the two products respectively. They are produced by a common production process and are sold in two different markets. The production process has a capacity of 30,000 man-hours. It takes 3 hours to produce a unit of A and 1 hour to produce a unit of B. The maximum number of units of A and B that can be sold in the market are 8,000 and 12,000 respectively. Formulate the above as a linear	10	CO2

	more than the quantities given below Manufactures Sarees How the orders should be placed? Apply MODI Method.		
Q 11	A construction company has requested bids for subcontracts on five different projects. Five company has responded their bids are represented below Apply Hungarian method to find minimum cost assignment of subcontracts assuming the each bidder can receive only one contract. OR A company has four market segments open and four salesmen are to be assigned one to each segment to maximize the expected total sales. The salesmen differ in their ability and the segments also differ in their sales potential. The details regarding the expected sales in each segment by a typical salesman under most favorable condition are given below. Segment $A=$ Rs. 60,000 , Segment $B=$ Rs. 50,000 , Segment $C=$ Rs. 40,000 and Segment $\mathrm{D}=$ Rs. 30,000 . It is estimated that working under same condition, the ability of salesmen in terms of proportional yearly sales would be as below: Salesman W $=7$, Salesman $X=5$, Salesman $Y=5$ and Salesman $Z=4$. Apply Hungarian method to find segments to salesmen for maximizing the total	20	CO3

	expected sales.		

