Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Program: B.Tech. – CS - All IBM specialization + CL Course : Compiler Design Course Code: CSEG 326

Semester: VI Time 03 hrs. Max. Marks: 100

Instructions: Attempt all questions, however internal choice is mentioned.

SECTION A	4
-----------	---

S. No.		Marks	CO
Q 1	Define lex. Discuss the three parts of a lex program?	4	CO1
Q 2	Explain different ways of representing three-address code.	4	CO3
Q 3	Describe the concepts of sentinel? Define handle pruning.	4	CO2
Q 4	Comprehend the comparison between synthesized attributes and inherited attributes.	4	CO3
Q 5	Describe the symbol table storage allocation information.	4	CO5
	SECTION B		
Q 6	Explain in detail about the compiler construction tools.	10	CO1
Q 7	What is handle pruning? Explain with the help of the grammar $S \rightarrow SS+/SS*/a$ and input string aaa*a++. Give a bottom up parser of the given input string.	10	CO2
Q 8	Write quadruple representation for the following:-		
	a + a * (b - c) + (b - c) * d	10	CO 4
Q 9	 Explain the concept of Syntax Directed Definition (SDD). Consider the CFG given below:- S → EN E → E + T E - T T T → T * F T / F F F → (E) digit N → ; a) Obtain the SDD for the above grammar. b) Construct the parse tree, syntax tree and annotated parse tree for the input string 5*6 +7; Or, Identify the following grammar is an LR(1) grammar and construct LALR parsing table. 	10	CO3/ CO4

	$S \rightarrow Aa \mid bAc \mid dC \mid bda$		
	$A \rightarrow d$. Parse the input string bdc . Using table generated by you.		
	SECTION-C		
Q 10	 Design the operator precedence parser and operator precedence graph for the grammar given below. E → E + E E - E E * E E / E E ^ E (E) -E id 	20	CO3
Q 11	Perform different code optimizations for the following code by first constructing Basic Blocks and flow graph and identify loop invariant statement. (1) PROD := 0 (2) I: = 1 (3) $T_1:= 4*I$ (4) $T_2:= addr(A) - 4$ (5) $T_3:= T_2[T_1]$ (6) $T_4:= addr(B) - 4$ (7) $T_5= T_4[T_1]$ (8) $T_6:= T_3*T_5$ (9) PROD:= PROD+T_6 (10) I:= I+1 (11) If I ≤ 20 goto (3) Or, Define the following terms: (a) DAG (b) Leading (c) Activation Record (d) Peep hole optimization	20	CO5

Name:

Enrolment No:

Course : Compiler Design

Course Code: CSEG 326

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Program: B.Tech. – CS - All IBM specialization + CL

Semester: VI Time 03 hrs. Max. Marks: 100

Instructions: Attempt all questions, however internal choice is mentioned.

SECTION A			
S. No.		Marks	CO
Q 1	Define lex. Discuss the three parts of a lex program?	4	CO1
Q 2	Discuss the concepts of sentinel? Define handle pruning.	4	CO2
Q 3	Define Syntax directed definition.	4	CO3
Q 4	Explain different ways of representing three-address code.	4	CO4
Q 5	Explain the fields in an Activation record.	4	CO5
	SECTION B		
Q 6	Write three-address code for the following program segment. sum = 0; for (i=0; i<=10; i++) sum = sum + a[i];	10	CO4
Q 7	Eliminate left recursion and left factoring (if present) from the following grammar:- $S \rightarrow aB / aC / Sd / Se$ $B \rightarrow bBc / f$ $C \rightarrow g$	10	CO2
Q 8	What is handle pruning? Explain with the help of the grammar $S \rightarrow SS+ / SS* / a$ and input string aaa*a++. Give a bottom up parser of the given input string.	10	CO2
Q 9	List out the properties of optimizing compilers? Or, Give the SLR parsing table for the grammar. $S \rightarrow L = R / R$ $L \rightarrow * R / id$ $R \rightarrow L$	10	CO1/ CO2

	SECTION-C			
Q 10	Analyze the following grammar is an LR(1) grammar and construct LALR parsing table. $S \rightarrow Aa \mid bAc \mid dC \mid bda$ $A \rightarrow d$.Parse the input string bdc . Using table generated by you.	20	CO2	
Q 11	Perform different code optimizations for the following code by first constructing Basic Blocks.flow graph, and identify loop invariant statement. $X=1$; $I=1$; $Y=1$;While (I <=n)	20	C O 5	
	Or,			
	Define the following terms:			
	(e) DAG			
	(f) Trailing			
	(g) Symbol Table Organization			
	(h) Peep hole optimization			