Name:

Enrolment No:

Course: Document Image Processing and Compression Program: M. Tech. (CSE) Course Code: CSIP7004 Semester: II Time 03 hrs. Max. Marks: 100

Instructions: Attempt all the questions.

	SECTION A		
S. No.		Marks	CO
Q1.	Consider the two image subsets S_1 and S_2 . For $V = \{1\}$, determine whether S_1 and S_2 are: i. 4-connected ii. 8-connected iii. m-connected	[4]	CO1
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		
Q2.	Consider the following image segment $\begin{array}{cccccccccccccccccccccccccccccccccccc$	[4]	C01
Q3.	What is image thresholding? What are its types?	[4]	CO2
Q4.	Explain region based segmentation and region growing with an example.	[4]	CO3
Q5.	What are the useful descriptors of a boundary?	[4]	CO4
	SECTION B	1	
Q6.	What is edge detection? Give the filter functions for the following edge based operators. i. Laplace ii. Prewitt iii. Kirch iv. Sobel	[10]	CO2
Q7.	Discuss the various steps involved to design an Optical Character Recognizer (OCR) for document written in Devanagari Lipi.	[10]	CO5

SECTION-C

- Q10. Write short note on the following
 - Discrete Cosine Transform (DCT) i.
 - ii. JPEG standard
 - iii. MPEG standard

Q11. Discuss the following region based feature descriptors.

- Area i.
- ii. Perimeter
- iii. Convex Area
- Euler Number iv.
- Solidity v.

OR

Define object classification. What is the role of feature extraction in object classification? Find following topological descriptors for the image shown below.

- Number of holes (i)
- (ii) Number of connected components
- (iii) Euler Number

[20] **CO4**

[20] **CO5**

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Course: Document Image Processing and Compression Program: M. Tech. (CSE) Course Code: CSIP7004

Semester: II Time 03 hrs. Max. Marks: 100

Instructions: Attempt all the questions.

SECTION A

S. No.		Marks	CO
Q1.	A common measure for transmission of digital data is baud rate; generally, transmission is accomplished in packets consisting of a start bit, a byte (8 bits) of information, and a stop bit. How many minutes would it take to transmit 1024 X 1024 image with 256 gray levels using a 56 K baud modem?	[4]	CO1
Q2.	Do the labeling of 4 and 8 connected components in the following image segment.	[4]	CO2
Q3.	What is an 'edge' in an image? On what mathematical operation are the two basic approaches for edge detection based on? Discuss in brief.	[4]	CO3
Q4.	What are the basic steps in JPEG image compression? What is zig-zag sequence?	[4]	CO4
Q5.	What is image thresholding? Discuss different types of image thresholding.	[4]	CO1
	SECTION B		
Q6.	Draw the functional block diagram of document image processing system and explain the purpose of each block in designing an Optical Character Recognizer (OCR) for document written in Devanagari Lipi.	[10]	CO4
Q7.	Consider the following image with ten different gray levels. Apply the Region merging and splitting segmentation approach using the uniformity predicate is for regions to merge when the difference in grey-level intensity between adjacent regions is 1. $5 5 5 5 5 5 5 6 6 6 $	[10]	CO1

			-			1	1					-			
		5	10	10	10	10	10	10	6	6	6				
		5	5	5	9	9	6	6	6	6	6				
		6	6	6	9	9	6	6	6	6	6	_			
		6	6	6	10	10	6	6	6	6	6	_			
		6	6	6	10	10	7	7	7	7	7	_			
		7	7	7	10	10	7	7	7	7	7	_			
		6	7	7	10	9	6	7	7	9	7				
		6	9	9	9	9	9	9	7	10	7				
		6	6	6	6	6	7	7	7	7	7				
Q8.	For the following compression that ca length coding, assur the run length. Consider an image vertical stripes. The and 8. The corres respectively. If thi	strip of gray le	hieved bits to 3 2 3 2 size 4 evels g wid	l using repre 3 3 2 2 1 50 X 50 X	g (a) sent f 3 2 0 0 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Huffr the pix 3 3 2 1 8 8 8 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9	nan coxel va 2 3 2 0 belov pm let	oding ilue and w. Th ft to r	of pi nd the e ima ight a	xel va 2 bit nge co are 12	onsists 28, 64	(b) ru eprese s of fi , 32,	ve 16	[10]	СО3
	efficiency.	s stripe	e ima	ge is	code										
09	efficiency.	-												[10]	<u> </u>
Q9.		-			1.	ed by	Huf							[10]	CO2
Q9.	efficiency.	-			1.		Huf							[10]	CO2
Q9. Q10.	efficiency.	the MP ng regio er Area ity	EG sta	andarc	1. SE4	ed by	• Huf	fman						[10]	CO2

 i. Compute the chain code for this particular object using 4-connectivity, starting with the top left pixel and moving in the clockwise direction. ii. Explain how you can make the chain code independent of the starting point, and demonstrate this by starting from bottom right corner pixel. 	
 iii. Explain how you can make a simple transform to make a chain code invariant to rotation. Demonstrate the concept on the object given below which is the rotation of original object. 	
OR	
What are called statistical moments? Discuss all the statistical moments up to order five.	