Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Course: Document Image Processing and Compression
Semester: II
Program: M. Tech. (CSE)
Course Code: CSIP7004
Instructions: Attempt all the questions.

SECTION B

Q6.	What is edge detection? Give the filter functions for the following edge based operators. i.	Laplace ii.	Prewitt				
iii.	Kirch						
iv.	Sobel			\quad	[10]	CO2	
:---:	:---:	:---:					
Q7.	Discuss the various steps involved to design an Optical Character Recognizer (OCR) for document written in Devanagari Lipi.	[10]					

Compress the following image using 2-bit uniform quantizer and calculate the distortion after compression.

8	17	12	7
4	5	30	23
9	5	30	21
13	14	6	0

Q10. Write short note on the following

i.	Discrete Cosine Transform (DCT)	[20]	CO5
ii.	JPEG standard		
iii.	MPEG standard		

Q11. Discuss the following region based feature descriptors.
i. Area
ii. Perimeter
iii. Convex Area
iv. Euler Number
v. Solidity

OR

Define object classification. What is the role of feature extraction in object classification? Find following topological descriptors for the image shown below.
(i) Number of holes
(ii) Number of connected components
(iii) Euler Number

Name:
Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Course: Document Image Processing and Compression
Program: M. Tech. (CSE)
Course Code: CSIP7004

Semester: II
Time 03 hrs.
Max. Marks: 100

Instructions: Attempt all the questions.

SECTION A

i.	Compute the chain code for this particular object using 4-connectivity, starting with the top left pixel and moving in the clockwise direction. Explain how you can make the chain code independent of the starting point, and demonstrate this by starting from bottom right corner pixel. Explain how you can make a simple transform to make a chain code invariant to rotation. Demonstrate the concept on the object given below which is the rotation of original object.		
What are called statistical moments? Discuss all the statistical moments up to ii.			

