

Q 8	Using the method of variation of parameters, solve the differential equation$(1-x) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-y=2(x-1)^{2} e^{-x}, 0<x<1$							10	CO1
Q 9	Evaluate $\int_{0}^{6} \frac{d x}{1+x^{2}}$ by using (i) Trapezoidal rule, (ii) by Simpson's one-third rule. (Take step size $h=1$).							10	CO4
OR									
Q 9	By means of Newton's divided difference formula, find the value of $y(8)$ from the following table:							10	CO4
SECTION-C									
Q 10 A	Use Gauss-Jacobi iterative method to solve the following system of simultaneous equations: $\begin{gathered} 9 x+4 y+z=-17 \\ x+6 y=4 \\ x-2 y-6 z=14 \end{gathered}$ Perform four iterations. Take initial approximation $x^{(0)}=y^{(0)}=z^{(0)}=0$.							10	CO3
Q 10 B	The table given below reveals the velocity ' v ' of a body during the time ' t ' specified. Find its acceleration at $t=1.0$ and $t=1.1$.							10	$\mathrm{CO4}$
				1.1	1.2				
				47.7	52.1	56.4	60.8		
Q 11	(A) Solve the differential equation$\left(D^{2}+5 D+4\right) y=x^{2}+7 x+9, \quad \text { where } D \equiv \frac{d}{d x}$							10	CO1
	(B) Find the value of $y(1.1)$ using Runge-Kutta method of fourth order, given that $\frac{d y}{d x}=y^{2}+x y, \quad y(1)=1.0$ Take $h=0.05$.							10	CO3
OR									
Q 11	(A) Solve the following differential equation:$\left(D^{2}+4\right) y=\sin 3 x+\cos 2 x \quad \text { where } D \equiv \frac{d}{d x}$							10	CO1
	(B) Find the real root of the equation $x e^{x}=\cos x$ in the interval (0,1) using RegulaFalsi method correct to four decimal places.							10	CO3

