Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Course: Mathematics II Program: All SoCS Branches Course Code: MATH 1005 Semester: II Time 03 hrs. Max. Marks: 100

Instructions: Attempt all questions. Question 9 and Question 11 have internal choice attempt any one.

SECTION A			
S. No.		Marks	CO
Q 1	Find the real root of the equation $x = e^{-x}$ in the interval (0,1) using the newton-Raphson method. Perform three iterations.	4	CO3
Q 2	The speed, v metres per second, of a car, t seconds after it starts, is shown in the following table: $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	CO4
Q 3	Prove that $\Delta = E\nabla = \nabla E = \delta E^{\frac{1}{2}}$ where Δ, ∇, δ and <i>E</i> are forward difference, backward difference, central difference and shift operators respectively.	4	CO4
Q 4	Use Euler's method to obtain approximate values of $y(0.1)$, $y(0.2)$, $y(0.3)$ and $y(0.4)$ for the differential equation $\frac{dy}{dx} = x + y$, $y(0) = 1$ with $h = 0.1$.	4	CO3
Q 5	In the poset (\mathbb{R}, \leq) for the set $A = \{x \in \mathbb{R} : 1 < x < 2\}$, find (i) all the upper and lower bounds of the set A, (ii) greatest lower bound and least upper bound of set A. (Note: \mathbb{R} represents set of real numbers)	4	CO5
	SECTION B		
Q 6	Let $X = \{1,2,3,4,5,6\}$, then divisibility relation / is a partial order relation on X. Draw the Hasse diagram of the poset $(X, /)$. Hence, find greatest element, least element, minimal elements and maximal elements of $(X, /)$. (Note: x/y means "x divides y")	10	CO5
Q 7	Out of 800 families with 4 children each, how many families would be expected to have (<i>i</i>) 2 boys and 2 girls, (<i>ii</i>) at least one boy, (<i>iii</i>) no girl, (<i>iv</i>) at most two girls? Assume equal probabilities for boys and girls.	10	CO2

Q 8	Using the method of variation of parameters, solve the differential equation $(1-x)\frac{d^2y}{dx^2} + x\frac{dy}{dx} - y = 2(x-1)^2e^{-x}, 0 < x < 1.$	10	CO1
Q 9	Evaluate $\int_{0}^{6} \frac{dx}{1+x^{2}}$	10	CO4
	by using (i) Trapezoidal rule, (ii) by Simpson's one-third rule. (Take step size $h = 1$). OR		
Q 9	By means of Newton's divided difference formula, find the value of $y(8)$ from the following table:	10	CO4
	SECTION-C		
Q 10 A	Use Gauss-Jacobi iterative method to solve the following system of simultaneous equations: 9x + 4y + z = -17 $x + 6y = 4$ $x - 2y - 6z = 14$	10	CO3
Q 10 B	Perform four iterations. Take initial approximation $x^{(0)} = y^{(0)} = z^{(0)} = 0.$ The table given below reveals the velocity 'v' of a body during the time 't' specified.Find its acceleration at $t = 1.0$ and $t = 1.1$. $t: 1.0 1.1 1.2 1.3 1.4$ $v: 43.1 47.7 52.1 56.4 60.8$	10	CO4
	(A) Solve the differential equation $(D^{2} + 5D + 4)y = x^{2} + 7x + 9, where \ D \equiv \frac{d}{dx}.$	10	CO1
Q 11	(B) Find the value of $y(1.1)$ using Runge-Kutta method of fourth order, given that $\frac{dy}{dx} = y^2 + xy, \qquad y(1) = 1.0$ Take $h = 0.05$.	10	CO3
	OR		
Q 11	(A) Solve the following differential equation: $(D^2 + 4)y = \sin 3x + \cos 2x$ where $D \equiv \frac{d}{dx}$.	10	CO1
X · · ·	(B) Find the real root of the equation $xe^x = \cos x$ in the interval (0,1) using Regula- Falsi method correct to four decimal places.	10	CO3

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Course: Mathematics II Program: All SoCS Branches Course Code: MATH 1005 Semester: II Time 03 hrs. Max. Marks: 100

Instructions: Attempt all questions. Question 9 and Question 11 have internal choice attempt any one.

	SECTION A		
S. No.		Marks	СО
Q 1	Perform five iterations of bisection method to obtain the smallest positive root of the equation $x^3 - 5x + 1 = 0$.	4	CO3
Q 2	A train is moving at the speed of 30 metres/second. Suddenly brakes are applied. The speed of the train per second after t seconds is given by $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	CO4
Q 3	Prove that $\Delta + \nabla = \frac{\Delta}{\nabla} - \frac{\nabla}{\Delta}$ where Δ and ∇ are forward difference and backward difference operators respectively.	4	CO4
Q 4	For the differential equation $\frac{dy}{dx} = 2y + 3e^x$, $y(0) = 0$. Calculate $y(0.2)$ by Taylor's series method retaining three non-zero terms only.	4	CO3
Q 5	In the poset ($\{1,2,3,4,6,9,12,18,36\}$, /) find the greatest lower bound and least upper bound of the sets $\{6,18\}$ and $\{4,6,9\}$. (Note: x/y means "x divides y")	4	CO5
	SECTION B		
Q 6	The inclusion relation \subseteq is partial order relation on the power set $P(S)$ of all subsets of <i>S</i> where $S = \{a, b, c\}$. Draw the Hasse diagram of the poset $(P(S), \subseteq)$. Hence, find greatest element, least element, minimal elements and maximal elements of $(P(S), \subseteq)$. (Note: $A \subseteq B$ means " <i>A</i> is subset of <i>B</i> ")	10	CO5
Q 7	The distribution of the number of road accidents per day in a city is Poisson with mean 4. Find the number of days out of 100 days when there will be (i) no accident, (ii) at least 2 accidents, (iii) at most 3 accidents, (iv) between 2 and 5 accidents.	10	CO2
Q 8	Solve by the method of variation of parameters the differential equation $x \frac{dy}{dx} - y = (x - 1) \left(\frac{d^2y}{dx^2} - x + 1 \right).$	10	CO1

Q 9	Evaluate integral				
	$\int_{a}^{6} \frac{e^{x}}{1+x} dx$				
	$J_0 1 + x$	10	CO4		
	. Using (i) Trapezoidal rule, (ii) Simpson's $3/8^{th}$ rule, (Take step size $h = 1$).				
	OR				
Q 9	The population of a town in the decimal census was as given below. Estimate the				
	population for the year 1895.				
	Year x: 1891 1901 1911 1921 1931	10	CO4		
	Population y :46668193101(in thousands) $(10, 10, 10, 10, 10, 10, 10, 10, 10, 10, $				
	SECTION-C				
Q 10 A	Solve the following system of equations by Gauss-Seidel iterative method:				
	20x + y - 2z = 17		CO3		
	3x + 20y - z = -18	10			
	2x - 3y + 20z = 25				
O 10 D	Perform four iterations. Take initial approximation $x^{(0)} = y^{(0)} = z^{(0)} = 0$.				
Q 10 B	The distance covered by an athlete for the 36.5 metre race is given in the following table:				
	Time (sec): 0 1 2 3 4 5	10	CO4		
	Distance (metre): 0 2.5 8.5 15.5 24.5 36.5				
	Determine the speed of the athlete at $t = 4$ sec and $t = 5$ sec.				
	(A) Solve the differential equation:				
	$(D^2 + D + 1)y = (1 + e^x)^2; D \equiv \frac{d}{dx}.$	10	CO1		
Q 11	(B) Using Picard's method of successive approximations, obtain a solution upto fifth				
	approximation of the equation $\frac{dy}{dx} = y + x$ such that $y = 1$ when $x = 0$.	10	CO3		
OR					
	(A) Obtain the general solution of the differential equation:				
Q 11	$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = x + e^x \cos x.$	10	CO1		
	(B) Find the real root of the equation $3x + \sin x - e^x = 0$ in the interval (0,1) by the method of false position correct to four decimal places.	10	CO3		