Name:

Enrolment No:

Semester: II

Time 03 hrs.

Max. Marks: 100

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Course: B. Tech

Program: CCVT, BAO, MAD, BFSI, MT, GG, IFM

Course Code: PHYS1008

I Instructions:

- 1. Draw the suitable diagram where ever needed.
- 2. Your answer should be concise and specific to the question.
- 3. Bold letters signify vector quantities.
- 4. Attempt all the questions of each section. Q. No. 8 and Q. No. 11 are having internal choice.

SECTION A

S. No.		Marks	CO
Q 1	Explain the different types of pumping mechanisms in laser systems.	4	CO1
Q 2	What are the properties of a wave-function?4		CO4
Q 3	Using the concept of motional emf, prove that $\nabla \times E_m = \nabla \times (u \times B)$, where \mathbf{E}_m is the motional emf.	4	CO3
Q 4	Write the Maxwell's equations for static fields.	4	CO2
Q 5	Prove that the phase velocity of de-Broglie wave exceeds the velocity of light.	4	CO4
	SECTION B	ļ	1
Q 6	a) An optical fibre has an attenuation 2.2dB/km. If 0.8 mW of optical power is initially launched into the fibre, what is the power level after 4kms?b)With the help of a suitable diagram explain the reconstruction process of a hologram.	5+5	C01
Q 7	a) Determine the total current in a wire of radius 1.6mm if $J = \frac{500}{\rho} a_z A/m^2$ b) Using Ampere's law and continuity equation, obtain the expression for displacement current density.	5+5	CO3
Q 8	 What will be the percentage error if an electron moves with a speed of equivalent KE of 100KeV if someone does not treat the electron relativistically? OR A metallic surface, when illuminated with light of wavelength λ₁, emits electrons with energies upto a maximum value E₁, and when illuminated with light of wavelength λ₂, where λ₂<λ₁, it emits electrons with energies upto a maximum value E₂. Prove that plank's constant h and the work function φ of the metal are given by 	10	CO4

	$h = \frac{(E_{i} \cdot (2 - E_{1}))\lambda_{1} \lambda_{2}}{C(\lambda_{1} - \lambda_{2})} \cdot \text{ and } \varphi = \frac{E_{2} \cdot \lambda_{2} - E_{1} \cdot \lambda_{1}}{(\lambda_{1} - \lambda_{2})}$		
Q 9	Using Gauss's law, derive the expression for electric flux density for infinite sheet c charge.	f 10	CO2
SECTION-C			
Q 10	 a) Differentiate between classical computing and quantum computing. b) What are nanomaterials? Give its applications. c) Given the ket ψ⟩=3 0⟩-2i 1⟩ Find its normalized state. 	8+7+5	CO5
Q 11	 a) What is Compton effect? Derive an expression for the Compton shift? b) Derive an expression for Schrodinger's time independent wave equation. OR a) Derive an expression for the energy of a particle trapped in a 1-D box. Find the zero point energy of this part constant b) State Heisenbergest mass taking Electrople. Using the xubo³¹ kigty principle prove that the electron constant is standard (us) b) State Heisenbergest mass taking Electrople. Using the xubo³¹ kigty principle prove that the electron constant (using the xubo³¹ kigty principle prove that the electron constant (using the xubo³¹ kigty principle prove that the electron constant (using the xubo³¹ kigty principle prove that the electron constant (using the xubo³¹ kigty principle prove that the electron constant (using the xubo³¹ kigty principle prove that the electron constant (using the xubo³¹ kigty principle prove that the electron constant (using the xubo³¹ kigty principle prove the traped (using the xubo³¹ kigty principle prove that the electron constant (using the xubo³¹ kigty principle prove that the electron constant (using the xubo³¹ kigty principle prove the xubo³¹ kigty principle	10+10	CO4
	Charge of electron 1.6 x 10 ⁻¹⁹ C		

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, May 2019

SECTION A

Course: Physics

Program: B.Tech.(CS-CCVT, BAO, MAD, BFSI, MT, GG, IFM)

Course Code: PHYS1008

Instructions:

- 1. Draw the suitable diagram where ever needed.
- 2. Your answer should be concise and specific to the question.
- 3. Bold letters signify vector quantities.
- 4. Attempt all the questions of each section. Q. No. 9 and Q. No. 11 are having internal choice.

S. No. What is the cutoff wavelength of the optical fiber? Q 1 Explain the following terms: Q 2 (a) dielectric constant and (b) dielectric strength of a material. State Faraday's law and give its applications. Q 3 Discuss the findings of the photoelectric effect's experimental setup? Q4 Q 5 Show that the wavelength associated with the particle of mass 'm' and kinetic energy 'E' is given by $\lambda = \frac{h}{\sqrt{2 \, mE}}$ **SECTION B**

Q 6	(a) A multimode step index optical fiber has core diameter 0.05 mm. Calculate the number of guided modes at operating wavelength 750 nm if numerical aperture is 0.25.	5	CO1
	(b) Explain key components of a lasing system.	5	
Q 7	Derive the expression for electric flux density due to a continuous finite line charge distribution using coulomb's law.	10	CO2
Q 8	What do you understand by phase velocity and group velocity of matter waves. Prove that $v_g = v_p - \lambda \frac{dv_p}{d\lambda}$	10	CO4
Q 9	Write the Maxwell's equations for time varying fields (final form). Discuss the	10	CO3

Semester: II Time 03 hrs. Max. Marks: 100

Marks

4

4

4

4

4

CO

CO1

CO2

CO3

CO4

CO4

	contribution of Maxwell to modify the Ampere's law for non-steady fields.		
	OR		
	Using Ampere's law, derive magnetic field expression for infinite sheet of current.		
	SECTION-C		1
	1		
Q 10	 (a) Differentiate between Cbits and Qubits. (b) Suppose that { u₁⟩, u₂⟩, u₃⟩} is an orthogonal basis for a three dimensional Uithert's areas. A system is in the state size here. 	5	
	Hilbert's space. A system is in the state given by $\frac{1}{7}$		
	$ \psi\rangle = \frac{1}{\sqrt{5}} u_1\rangle - i\sqrt{\frac{7}{15}} u_2\rangle + \frac{1}{\sqrt{3}} u_3\rangle$	10	CO5
	Determine if this state is normalized.		
	(c) What do you understand by top-down and bottom-up approaches for the manufacturing of nanomaterials.	5	
011	(a) Derive the time demendent Schwedinger Weye equation	10	
Q11	 (a) Derive the time dependent Schrodinger Wave equation. (b) (i) An electron is confined in a 1D infinite potential box of boundary between 0 and 2 nm. If the particle has 6 nodes (excluding boundaries) find the 	10	
	particle energy in eV.	5	
	(ii) An electron has a speed of 1.05×10^4 m/sec within the accuracy of 0.01%. Calculate the uncertainty in the position of the electron.	5	
	OR		
	(a) Show that the direction of the recoiled electron in Compton's effect is given by:	10	
	$\cot\frac{\theta}{2}$		CO4
	$tan\varphi = \frac{\cot\frac{\theta}{2}}{1 + \frac{hv}{m_0c^2}}$ where θ is the scattering angle and φ represents the angle of recoiled.		
	$m_0 c^2$		
	where θ is the scattering angle and ψ represents the angle of reconcu	10	
	electron.	10	
	(b) (i) Calculate the lowest energy of an electron confined in a 3-D cubical box of each side 1Å. (ii) Find the temperature at which the average energy of the		
	molecules of a perfect gas would be equal to the lowest energy of the electron, $k_B = 1.38 \times 10^{-23}$ J/K.		
	Values of constants:		

Constant	Standard Values
Planck's Constant (h)	6.63 x 10 ⁻³⁴ Joule-sec
Rest mass of an Electron	9.11 x 10 ⁻³¹ Kg
Permittivity of free space (ε_0)	8.854 x 10 ⁻¹² Farad/meter
Velocity of Light c	3 x 10 ⁸ m/sec
Charge of electron	1.6 x 10 ⁻¹⁹ C