Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, May 2019

Course: M.Tech CSE

Program: Modelling and Simulation of Digital Systems

Semester: II Time 03 hrs. Max. Marks: 100

Course Code: CSEG 7005 Max. Mark		s: 100			
SECTION A					
S. No.		Marks	CO		
Q 1	Explain discrete and continuous simulation system with example.	4	CO1		
Q 2	Elaborate are the principles of modeling.	4	CO2		
Q 3	Differentiate Pseudo code and algorithm with example.	4	CO2		
Q 4	Explain the Combined Linear Congruential generators.	4	CO3		
Q 5	Explain any 4 applications of simulation.	4	CO4		
	SECTION B				
Q 6	Define simulation. Explain the purpose, limitation and advantages of simulation.	10	CO3		
Q 7	Which scheduling policy is most suitable for time-shared systems and why?	10	CO4		
Q 8	Explain the Analytical Hierarchical Process with examples.	10	CO1 CO2		
Q 9	<i>"A classic example of exponential growth is expansion of bacterial colonies"</i>.Making suitable assumptions design a mathematical model to replicate the bacterial growths on a system.OR	10	CO4		
	We observe the following $n = 8$ data points: 1.41 0.26 1.97 0.33 0.55 0.77 1.46 1.18 Is there any evidence to suggest that the data were not randomly sampled from a Uniform (0, 2) distribution?				
	SECTION-C				
Q 10	Critically discuss the Verification and Validation of Digital Models? Explain the techniques with suitable examples and diagrams.	20	CO3 CO4		
Q 11	 For each of the following pairs of terms, define each term, and state the key difference(s) between the two terms: a) "simulation model" and "analytical model" b) "transient" and "steady-state" c) "confidence interval" and "confidence level" d) "2 test" and "KS test" e) "open queueing network" and "closed queueing network" 	20	CO1 CO3 CO4		

OR	
Construct Causal Graphs for the following cases (make suitable assumptions and justify with explanations):	
a) Climate change in India	
b) Speech modulation and sentiments	