Name:					
Enrolment No:					
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES					
	nme: Signal and System				
		: 100			
Enrolment No:UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018Course: B. Tech Electronics and Communication Programme: Signal and SystemTime: 03 hrs.Max. Marks: 100Instructions:SECTION ASECTION ASECTION AConsider a continuous time system with input x(t) and output y(t) related by y(t) =x sin(t) (a) Is this system Causal? (b) Is this system Causal? (b) Is this system Causal? (c) Is this system linear ?5CO2Q 3What is the condition for Z Transform the exist?5CO3SECTION BAttempt all the question $y(n) - ay(n-1) = bx(n) + x(n-1)$, where a is a real and less than 1 in magnitude. Find a value of b such that the frequency response of the system satisfies $ H(e^{iw}) = 1$, for all w.10CO3Q 6Find the convolution of the signal $x_1 = 2e^{-2t}u(t)$ and $x_2 = u(t)$ using Fourier transform?10CO3Q 7The impulse response of a system. Plot the frequency response.10CO3Q 8Determine the z transform of the anticausal signal $x_1 = 2e^{-2t}u(t)$ and $x_2 = u(t-1)$ and depict the10CO3					
S. No.					
		Marks			
QI		5	CO1		
		5	COI		
02					
		5	CO_{2}		
		5	02		
0.2			GOA		
Q 4		5	CO3		
	SECTION B				
	Attempt all the question				
Q5					
	y(n)-ay(n-1)=bx(n)+x(n-1), where a is a real and less than 1 in magnitude. Find a	10	CO3		
	value of b such that the frequency response of the system satisfies $ H(e^{iw}) =1$, for all w.	10	005		
0(r_{1}^{2}	10	~~~		
		10	CO2		
Q /	The impulse response of a continuous system is expressed as $h(t) = \frac{1}{RC} e^{\overline{RC}} u(t)$				
		10	CO3		
	Find the frequency response of a system. Plot the frequency response.				
Q 8		10	CO4		
	ROC and the locations of poles and zeros in the z plane.	10			
	SECTION-C				
	Attempt all the question.				
OO(-)		10	CO^{2}		
Q 9 (a)	Use the unilateral Laplace transform to determine the output of a system represented by the differential equation	10	CO3		

	$\frac{d^{2} y(t)}{dt^{2}} + 5 \frac{dy(t)}{dt} + 6 y(t) = \frac{dx(t)}{dt} + 6 x(t)$		
	In response to the input $x(t) = u(t)$. Assume to the initial condition on the system are		
	$y(0^{-}) = 1$ and $\dot{y}\dot{c}=2$. Identify the zero state response of the system and the zero input		
	response.		
(b)	Find the Fourier Transform of the following periodic signal $x(n) = \sin(w_0 n)$ with $w_0 = \frac{2\pi}{5}$	10	
Q 10	 A causal discrete time LTI system is described by y(n) - 3/4 y(n - 1) + 1/8 y(n - 2) = x(n) Where x(n) and y(n) are the input and output of the system, respectively (a) Determine the system function H(z) for a causal system function. (b) Find the impulse response h(n) of the system. (c) Find the step response of the system 	20	CO4

Name:	ent No: UPES				
Enrolme	Enrolment No:				
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018				
		[
_					
	Inte: 05 hrs. Marks: 100 Instructions:				
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018 Course: B. Tech Electronics and Communication Semester: III Programme: Signal and System Time: 03 hrs. Max. Marks: 100					
S. No.	Attempt all the questions.	Marks			
Q 1	Find whether the following systems are				
	(1) Static and Dynamic (2) I inear and Non I inear				
		5	CO1		
	(a) $Y(t) = x(t) $				
Q 2	The single $x_1(t) = 10\cos(100\pi t)$ and $x_2(t) = 10\cos(50\pi t)$ are both sources of $f_s = 75$				
		5	CO1		
		5	CO3		
Q 4		5	CO1		
	SECTION B				
	Attempt all the question				
Q5	Determine whether the following signals are power or energy signals or neither.				
	(a) $x(t) = e^{-a t }$	10	CO1		
`		10	CO2		
Q 7	Find the signal x(t) that corresponds to the Laplace transform				
	$3s^2 + 22s + 27$	10	CO2		
	$X(s) = \frac{3s^2 + 22s + 27}{(s^2 + 3s + 2)(s^2 + 2s + 5)}$				
Q 8	Determine the z transform of the anticausal signal $x(n) = a^n u$ (-n-1) and depict the	10	COL		
	ROC and the locations of poles and zeros in the z plane.	10	CO4		

-

	SECTION-C		
	Attempt all the question.		
Q 9 (a)	Consider a continuous time LTI system for which the input $x(t)$ and output $y(t)$ are related by the differential equations		
	$\frac{d^2 y(t)}{dt^2} - \frac{dy(t)}{d(t)} - 2y(t) = x(t)$	20	
	Let $X(s)$ and $Y(s)$ denote the laplace transform of $x(t)$ and $y(t)$, respectively and let $H(S)$ denote the laplace transform of $h(T)$, the system impulse response.		CO3
	 (a) Determine H(s) as a ration of two polynomial in s. Sketch the Pole zero pattern of H(s) 		
	(b) Determine h(t) for each of the following cases.1. The system is stable		
	2. The system is causal		
	3. The system is neither stable nor causal.		
Q 10	An LTI system is characterized by the system function		
	$H(z) = \frac{3 - 4z^{-1}}{1 - 35z^{-1} + 15z^{-2}}$	20	CO4
	Specify the ROC of $H(z)$ and determine $h(n)$ for the following conditions:	20	
	(a) The system is causal and unstable		
	(b) The system is noncausal and stable		