Name:								
Enrolme	Enrolment No:							
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES								
C	End Semester Examination, December 2018							
	Course:Network Theory, ECEG2006Semester: IIIProgramme:B.Tech Electrical							
-	Time: 03 hrs. Max. Marks: 100							
	Instructions: All questions are compulsory							
	SECTION A							
S. No.		Marks	CO					
Q 1	List the properties of RL impedance function.	4	CO2					
Q.2	Differentiate between dependent and independent sources.	4	CO1					
Q.3	Derive Laplace Transform of saw tooth triangular pulse of unity height and duration T.	4	CO3					
Q.4	A circuit consists of two parallel resistances R1 and R2 in series with R3. The total circuit current is I. What is the current passing through R2?	4	CO1					
Q.5	State Thevenin's and Millman's theorem with their equivalent circuit diagram.	4	CO1,2					
	SECTION B							
Q.6	How is two terminal pair network characterized in terms of input output variables? Also mention various two port parameters and write equations in terms of these parameters with their equivalent circuit diagram.	10	CO4					
Q.7	Using Nodal analysis, find current through branch AB of the network shown. $4\Omega \qquad A \qquad -j^2 \qquad 2\Omega$ $20 \ge 0^{\circ}V \qquad + \qquad 3 \qquad 2^2 \qquad - 1 \qquad 10 \ge 45^{\circ}V$ B	10	CO2,3					
Q.8	Find the FOSTER form of the function given below $Z(s) = \frac{2(s+2)(s+5)}{(s+4)(s+6)}$	10	CO4					
Q.9	Determine whether the following functions are positive real (i) $\frac{2s^2+2s+1}{s^3+2s^2+s+2}$ (ii) $\frac{s^3+2s^2+2s+1}{s^2+s+2}$	10	CO4					

	SECTION-C		
Q.10	 (a)Test the following polynomial for Hurwitz property: (i) s⁴+7s³+6s²+21s+8 (ii) s⁷+3s⁵+2s³+s (b) For the network shown in fig. below, draw the oriented graph and obtain the tieset matrix. Use this matrix to calculate the current i. 	8	CO5
	$2V = \begin{bmatrix} 1 \Omega & 2\Omega \\ 2\Omega & 1\Omega \\ 3\Omega & \\ 3\Omega & \\ \end{bmatrix} 1\Omega$	12	CO2
Q.11	(a) The network shown in figure has acquired steady state with the switch closed for t < 0. At t = 0, the switch is opened. Obtain i(t) for t>0. 4^{ohm} $3_{6}v + \frac{10}{10} + \frac{10}$	10	CO5
	(b) Calculate the ABCD parameters for the block A and B separately and then using these results, calculate the ABCD parameters of the whole circuit shown in the figure. Prove any formula used. a. 3Ω f f Ω f f Ω f f Ω f f f Ω f	10	

Name: Enrolment No:			
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018		
Course:Network Theory, ECEG2006Semester: IProgramme:B.Tech Electrical			
Time: 0	: 100		
	ions: All questions are compulsory SECTION A		
S. No.		Marks	СО
Q 1	List the necessary and sufficient conditions for positive real function.	4	CO2
Q.2	A resistance of 10 ohm is connected across a supply of 200V. if a resistance R is now connected in parallel with a 10 ohm resistance, the current drawn from the supply gets doubled. Find the value of unknown resistance.	4	CO1
Q.3	Derive Laplace Transform of square pulse of unity height and duration T.	4	CO3
Q.4	Differentiate RL and RC impedance function.	4	CO2
Q.5	State Norton's and Reciprocity's theorem with their equivalent circuit diagram.	4	CO1
	SECTION B		
Q.6	The Z-parameter of a two port network are $Z_{11} = 2.1\Omega$, $Z_{12} = Z_{21} = 0.6\Omega$, $Z_{22} = 1.6\Omega$. A resistor of 2Ω is connected across port 2. What voltage must be applied at port 1 to produce a current of 0.5 A in the 2Ω resistor.	10	CO2
Q.7	Determine the cut-sets of the graph shown in figure and write network equilibrium equation using cut set matrix.	10	CO3
Q.8	Realize the given function in Cauer I form $F(s) = \frac{2(s+1)(s+3)}{(s+2)(s+6)}$	10	CO4
Q.9	The switch in the network shown in figure is closed at $t = 0$. Determine the voltage $V_c(t)$ across the capacitor.	10	CO5

