Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018

Course: B.tech CE+RP Semester: III
Programme: Introduction to Bioengineering Time: 03 hrs.

Course Code: CHCE2006 Max. Marks: 100

Instructions:

SE	CT	ΊC	N	A

S. No.		Marks	CO
Q 1	What are enzymes? What is the chemical basis of enzyme specificity?	zymes? What is the chemical basis of enzyme specificity?	
Q 2	Briefly describe the structured and unstructured models of microbial growth?		CO2
Q 3	What is a fed-batch reactor? Mention two advantages/ disadvantages.		CO3
Q 4	Mention key variables that impact mass transfer coefficient, K _{L,a} in bioreactors	4	CO3
Q 5	Discuss the role of dialysis in protein purification.	4	CO4
	SECTION B		
Q 6	The enzyme, fumarase, has the following kinetic constant:		
	$S+E\frac{k_1}{k_{-1}}ES k_2 P+E$		
	Where $k_1 = 10^9 \text{ M}^{-1} \text{ s}^{-1}$ $k_{-1} = 4.4 \times 10^4 \text{ s}^{-1}$ $k_2 = 10^3 \text{ s}^{-1}$	10	CO1
	 a. What is the value of Michaelis constant for this enzyme? b. At an enzyme concentration of 10⁻⁶, what will be the initial rate of product formation at a substrate concentration of 10⁻³ M? 		
Q 7	Aerobic degradation of an organic compound by a mixed culture of organisms in waste water can be represented by the following reaction.	10	CO2
	$C_3H_6O_3 + a O_2 + b NH_3 \longrightarrow c C_5H_7NO_2 + d H_2O + e CO_2$		
	a. Determine a, b, c, d and e, if $Y_{X/S} = 0.4$ g X/g S		
	b. Determine the yield coefficient $Y_{X/O2}$ and $Y_{X/NH3}$		
	c. Determine the degree of reductions for the substrate, bacteria, and RQ for the		
	organisms. OR		
	Aerboic growth of S. cerevisiae on ethanol is simply described by the following		
	overall reaction:		

	c CH _{1.704} N _{0.149} O _{0.408} + d CO ₂ + e H ₂ O a) Determine the coefficients a, b, c, and d, where RQ = 0.66 b) Determine the biomass yield coefficient, Y _{X/S} , and oxygen yield coefficient,		
Q 8	$Y_{X/O2}$ (gdw/gO2). Explain, why, in most fermentation, batch sterilization is preferred over continuous sterilization.	10	CO4
Q 9	 a) What are the different types of bioreactor? Describe briefly the function of key components in a bioreactor b) Write a short note on selection of impellers and which one is most suitable for animal cells. 	10	CO3
	SECTION-C		
Q 10	 a) Perform mass balance on ideal CSTR reactor assuming steady-state performance and decay reaction of first order and express the outlet concentration. b) 2 CSTRs are placed in series for a first-order reaction. 40% conversion is obtained in the first CSTR. What is the relative size of the second CSTR, compared to the first, to obtain 80% overall conversion 	20	CO3
Q 11	Write a short note on (i) Fluidized bed bioreactor (ii) Plug flow reactor (iii) Chromatography (iv) Electrophoresis	20	CO3 and CO4