Name: Enrolment No:			
Course: MECH2007 (Fluid Mechanics) Semester: III Programme: B. Tech Mechanical Engineering Time: 03 hrs. Max. Marks: 100 Instructions:			
SECTION A			
Q1	It is often assumed that "sharp objects can cut through the air better than blunt ones." Based on this assumption, the drag on the object shown in Figure should be less when the wind blows from right to left than when it blows from left to right. Experiments show that the opposite is true. Interpret the results.	4	CO5
Q2	A drop is being released from a syringe upon a Teflon surface and three resulting cases are shown below: (a) (b) (c) Categorize these three cases of drop impacts in the increasing order of Weber number. Explain the physical significance of it.	4	CO3
Q3	For the following 2D flow fields: $\vec{V}=(u, v)=u(x, y) \dot{i}+v(x, y) \vec{j}$ or $\Psi(x, y)$ (a)Couette flows: $u=y, v=0$ $\text { (b) } \Psi=x^{2}-y^{2}$ For each case, determine if the flow is incompressible, if it is irrotational and if it can be treated as potential flows.	4	CO4
Q4	Why are dimples made on the golf ball surface?	4	CO5
Q5	Describe the physical significance of kinematic viscosity? What are its units?	4	CO1

SECTION B 5 Questions x 8 Marks = 40 Marks			
Q6	The square, flat plate shown in first figure is cut into four equal-sized pieces and arranged as shown in the second figure. Determine the ratio of the drag on the original plate [case (a)] to the drag on the plates in the configuration shown in (b). Assume laminar boundary flow. Explain your answer physically? (a) (b)	8	CO5
Q7	A washing machine agitator is to be designed. The power, \boldsymbol{P}, required for the agitator is to be correlated with the amount of water used (indicated by the depth, \boldsymbol{H}, of the water). It also depends on the agitator diameter, \boldsymbol{D}, height, \boldsymbol{h}, maximum angular velocity, $\boldsymbol{\omega}_{\max }$, and frequency of oscillations, \boldsymbol{f}, and water density, $\boldsymbol{\rho}$, and viscosity, $\boldsymbol{\mu}$. Determine the number of independent Π groups (dimensionless groups) in this problem using Buckingham Π theorem and the dependence of power upon other relevant parameters. OR Using Buckingham Pi Theorem, find the dependence of capillary rise upon other parameters.	8	CO 3
Q8	A 30 cm diameter horizontal pipe terminate in a nozzle with the exit diameter of 7.5 cm . if the water flows through at a rate of $0.15 \mathrm{~m}^{3} / \mathrm{s}$, what force will be exerted by fluid on the nozzle? OR A tornado can be approximated by a free vortex of strength Γ for $r>R_{c}$, where R_{c} is the radius of the core. Velocity measurements at points A and B indicate that $V_{A}=125 \mathrm{ft} / \mathrm{s}$ and	8	CO2

	$V_{B}=60 \mathrm{ft} / \mathrm{s}$. Determine the distance from point A to the center of the tornado. Why can the free vortex model not be used to approximate the tornado throughout the flow field $(r \geq 0)$?		
Q9	A flow nozzle equipped with a differential pressure gauge is used to measure the flow rate of water at $10^{\circ} \mathrm{C}\left(\rho=999.7 \mathrm{~kg} / \mathrm{m}^{3}\right.$ and $\left.\mu=1.307 \times 10^{-3} \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}\right)$ through a $3-\mathrm{cm}$-diameter horizontal pipe. The nozzle exit diameter is 1.5 cm , and the measured pressure drop is 3 kPa . Determine the average velocity through the pipe, and the head loss.	8	CO3
Q10	The potential flow a blunt body can be approximated by combining a uniform flow in the positive x direction and a source located at the origin. Let $\boldsymbol{U}=20 \mathrm{~m} / \mathrm{s}$ and $\boldsymbol{m}=120 \mathrm{~m}^{2} / \mathrm{s}$ (source strength) (a) Obtain expression for the velocity potential, and velocity field for the combined flow. (b) Determine the stagnation points in the flow where the velocity is zero.	8	CO4
SECTION-C 2 Questions x 20 Marks = 40 Marks (1 Choice)			
$\text { Q11 } 4 .$ $5 .$	Consider steady, incompressible, parallel, laminar flow of a liquid flowing between two parallel plates. The liquid has a density, ρ, and dynamic viscosity, μ. The distance between the plates is ' h '. The gravitational force acts downward. (a) Write down the continuity equation and NS equations of this problem, and simplify the equations by making appropriate assumptions. Please list your assumptions. Hint: Treat the flow as 2D. (b) What is the velocity boundary condition at the free surface. (c) Find the velocity profile. (d) Calculate the shear stress at the wall.	20	CO4

Q12	A fan is to produce a constant air speed of $40 \mathrm{~m} / \mathrm{s}$ throughout the pipe loop shown in the Figure below. The 3-m diameter pipes are rough and each of the four 90° elbows has a loss coefficient of 0.3. Determine the power that the fan adds to the air when: a) The pipes have a surface roughness of the order of 3 mm. b) The pipes are smooth.	CO3	

