Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Somester Examination December 2018

End Semester Examination, December 2018

Programme Nan	ne:	B. Tech. (FSE)	Semester	: III
Course Name	:	Fluid Mechanics & Fluid Flow Machines	Time	: 03 hrs
Course Code : GNEG 245		GNEG 245	Max. Marks	
Nos. of page(s)	:			
Instructions:				
		SECTION A		

S. No.		Marks	СО
Q 1	Write the equation of net/resultant force according to:a. Euler's equation of motionb.b. Navier-Stikes Equationc. Reynold's equation of motiond.Newton's second low of motion	4	CO1
Q 2	Derive the relationship between Bulk modulus and Pressure of a gas for adiabatic process	4	CO2
Q 3	Derive the equation for Minor energy (head) loss in pipe flow due to Sudden obstruction	4	CO2
Q 4	A hydraulic press has a ram of 30 cm diameter and a plunger of 4.5 cm diameter. Find the weight lifted by the hydraulic press when the force applied at the plunger is 500 N.	4	CO3
Q 5	Write short note on:a.Vena-contractab.Temperature-Lapse-Rate	4	CO1
	SECTION B		
Q 6	A fluid flow field is given by $V = x^2 yi + y^2 zj - (2xyz + y z^2)k$ Prove that it is a case of possible steady incompressible fluid flow. Calculate velocity and acceleration at the point (2, 1, 3) OR Three pipes of lengths 800 m, 500 m and 400 m and of diameters 500 mm, 400 mm and 300 mm respectively are connected in series. These pipes are to be replaced by a single pipe of	10	CO3
Q 7	length 1700 m. Find the diameter of the single pipe.Find the convective acceleration at the middle of a pipe which converges uniformly from 0.4m diameter to 0.2 m over 2 m length.a. If the rate of flow is 20 L/s.b. If the rate of flow changes uniformly from 20 L/s to 40 L/s in 30 seconds, Find the total acceleration at the middle of the pipe.	10	CO4
Q 8	Water flows through a pipe AB 1.2 m diameter at 3 m/s and then passes through a pipe BC 1.5 m diameter. At C, the pipe branches. Branch CD is 0.8 m in diameter and carries one-	10	CO5

	third of the flow in AB. The flow velocity in branch CE is 2.5 m/s. Find the volume rate of flow in AB, the velocity in BC, the velocity in CD and the diameter of CE.		
Q 9	Derive the equations for most economic hydraulic sections for rectangular channel and trapezoidal channel.	10	CO4
	SECTION-C		
Q 10	A trapezoidal channel has side slope 1 to 1. It is required to discharge 13.75 m ³ /s of water with a bed gradient of 1 in 1000. If unlined, the value of Chezy's C is 44. If lined with concrete, its value is 60. The cost per m ³ of excavation is four times the cost per m ³ of lining. The channel is to be the most efficient one. Find whether the lined canal or the unlined canal will be cheaper. What will be the dimensions of that economical canal?		
	OR	20	CO6
	A horizontal pipe line 40 m long is connected to a water tank at one end and discharges freely into the atmosphere at the other end. For the first 25 m of its length from the tank, the pipe is 150 mm diameter and its diameter id suddenly enlarged to 300 mm. the height of water level in the tank is 8 m above the centre of the pipe. Considering all losses of head which occur, determine the rate of flow. Take, coefficient of friction is 0.01 for both section of pipe.		
Q 11	A circular plate 4 m diameter is immersed in water in such a way that its greatest and least depth below the free surface are 5 m and 2 m respectively. Determine the total pressure on one face of the plate and position of the Centre of pressure.	20	CO5

Name:

Enrolment No:

UPES

Semester

Time

: III

Max. Marks: 100

: 03 hrs

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Programme Name:B. Tech. (FSE)Course Name:Fluid Mechanics & Fluid Flow MachinesCourse Code:GNEG 245Nos. of page(s):Instructions:

SECTION A

S. No.		Marks	CO
Q 1	Write short note on:a.Vena-contractab.Temperature-Lapse-Rate	4	CO1
Q 2	Write the equation of net/resultant force according to: a. Euler's equation of motion b. Navier-Stikes Equation c. Reynold's equation of motion d. Newton's second low of motion	4	CO 1
Q 3	Derive the relationship between Bulk modulus and Pressure of a gas for adiabatic process	4	CO2
Q 4	Derive the equation for Minor energy (head) loss in pipe flow due to Sudden obstruction	4	CO2
Q 5	A hydraulic press has a ram of 30 cm diameter and a plunger of 4.5 cm diameter. Find the weight lifted by the hydraulic press when the force applied at the plunger is 500 N.	4	CO3
	SECTION B		
Q 6	 Find the convective acceleration at the middle of a pipe which converges uniformly from 0.4 m diameter to 0.2 m over 2 m length. a. If the rate of flow is 20 L/s. b. If the rate of flow changes uniformly from 20 L/s to 40 L/s in 30 seconds, Find the total acceleration at the middle of the pipe. 	10	CO4
Q 7	Water flows through a pipe AB 1.2 m diameter at 3 m/s and then passes through a pipe BC 1.5 m diameter. At C, the pipe branches. Branch CD is 0.8 m in diameter and carries one-third of the flow in AB. The flow velocity in branch CE is 2.5 m/s. Find the volume rate of flow in AB, the velocity in BC, the velocity in CD and the diameter of CE.		CO5
Q 8	Derive the equations for most economic hydraulic sections for rectangular channel and trapezoidal channel.		CO4
Q 9	A fluid flow field is given by $V = x^2 yi + y^2 zj - (2xyz + y z^2)k$ Prove that it is a case of possible steady incompressible fluid flow. Calculate velocity and acceleration at the point (2, 1, 3)	10	CO3
	OR		
	Three pipes of lengths 800 m, 500 m and 400 m and of diameters 500 mm, 400 mm and 300		

mm respectively are connected in series. These pipes are to be replaced by a single pipe of		
length 1700 m. Find the diameter of the single pipe.		
SECTION-C		
A circular plate 4 m diameter is immersed in water in such a way that its greatest and least depth below the free surface are 5 m and 2 m respectively. Determine the total pressure on one face of the plate and position of the Centre of pressure.	20	CO5
A horizontal pipe line 40 m long is connected to a water tank at one end and discharges freely into the atmosphere at the other end. For the first 25 m of its length from the tank, the pipe is 150 mm diameter and its diameter id suddenly enlarged to 300 mm. the height of water level in the tank is 8 m above the centre of the pipe. Considering all losses of head which occur, determine the rate of flow. Take, coefficient of friction is 0.01 for both section of pipe.		
OR	20	CO6
A trapezoidal channel has side slope 1 to 1. It is required to discharge 13.75 m ³ /s of water with a bed gradient of 1 in 1000. If unlined, the value of Chezy's C is 44. If lined with concrete, its value is 60. The cost per m ³ of excavation is four times the cost per m ³ of lining. The channel is to be the most efficient one. Find whether the lined canal or the unlined canal will be cheaper. What will be the dimensions of that economical canal?		
	length 1700 m. Find the diameter of the single pipe. SECTION-C A circular plate 4 m diameter is immersed in water in such a way that its greatest and least depth below the free surface are 5 m and 2 m respectively. Determine the total pressure on one face of the plate and position of the Centre of pressure. A horizontal pipe line 40 m long is connected to a water tank at one end and discharges freely into the atmosphere at the other end. For the first 25 m of its length from the tank, the pipe is 150 mm diameter and its diameter id suddenly enlarged to 300 mm. the height of water level in the tank is 8 m above the centre of the pipe. Considering all losses of head which occur, determine the rate of flow. Take, coefficient of friction is 0.01 for both section of pipe. OR A trapezoidal channel has side slope 1 to 1. It is required to discharge 13.75 m ³ /s of water with a bed gradient of 1 in 1000. If unlined, the value of Chezy's C is 44. If lined with concrete, its value is 60. The cost per m ³ of excavation is four times the cost per m ³ of lining. The channel is to be the most efficient one. Find whether the lined canal or the unlined canal	length 1700 m. Find the diameter of the single pipe. SECTION-C A circular plate 4 m diameter is immersed in water in such a way that its greatest and least depth below the free surface are 5 m and 2 m respectively. Determine the total pressure on one face of the plate and position of the Centre of pressure. 20 A horizontal pipe line 40 m long is connected to a water tank at one end and discharges freely into the atmosphere at the other end. For the first 25 m of its length from the tank, the pipe is 150 mm diameter and its diameter id suddenly enlarged to 300 mm. the height of water level in the tank is 8 m above the centre of the pipe. Considering all losses of head which occur, determine the rate of flow. Take, coefficient of friction is 0.01 for both section of pipe. 20 A trapezoidal channel has side slope 1 to 1. It is required to discharge 13.75 m ³ /s of water with a bed gradient of 1 in 1000. If unlined, the value of Chezy's C is 44. If lined with concrete, its value is 60. The cost per m ³ of excavation is four times the cost per m ³ of lining. The channel is to be the most efficient one. Find whether the lined canal or the unlined canal