Name:							
Enrolment No:				UPES			
Time: 0	: PRINCIPLES OF RE er: VII mme: BTECH GSE	RSITY OF PETROLEU End Semester Examina SERVOIR ENGINEEF ompulsory. There is no	ition, December 2 RING	2018 Max. Marks		been	
provide	ed. You have to attempt of	only one of the alternation SECTIO		estions.			
		SECTION	JN A				
S. No.					Marks	СО	
1	Given the following gas						
	Component	Weight fraction					
	C1	0.65					
	C2	0.15					
	C3	0.10					
	n-C4	0.06					
	n-C5	0.04			4	CO1	
	Calculate: a. Mole fraction of the gas b. Apparent molecular weight c. Specific gravity d. Specific volume at 300 psia and 120°F by assuming an ideal gas behaviour.						
2	A typical pressure-temperature phase diagram of an oil reservoir is characterised by quality lines that are closely spaced near the dew point curve. Define the properties of reservoir along with the liquid shrinkage curve.			4	CO3		
3	Diagrammatically represent the process of flash and differential liberation tests.			4	CO3		
4	Under which flowing condition the following equation is validated						
	dp/dr=0 at the boundary condition. Justify the answer.				4	CO2	
5	"When a wetting and a non wetting phase flow together in a reservoir rock, each phase follows separate and distinct paths." Justify how the presence of one phase effects the fluid flow in porous and permeable media with the help of a graph.			4	C02		
		SECTIO	JN B				
6	Calculate the average permeability of a formation that consists of four beds in series, assuming:				10	CO2	

	- T '	4						
		ear system	<u><u><u></u></u></u>	50 8				
	b. Radial system with rw=0.3ft and re=1,450 ft.							
	Ded	Longth of had (A)	Domessi	lity (mD)				
	Bed	Length of bed (ft)	Permeabi					
		400	7					
	2	250	4(
	3	300	1(
_	4	500	6	0				
7	Define the following terms							
	i. OFVF							
	ii. Gas solubility							
	111.	Effective porosity	anial tara					
	iv.	Surface tension interf						
	V.	Cricondenbar temper					10	CO4
	vi.	Connate water satura	tion					
	vii.	Wettability						
	viii.	Free water level						
	ix.	Bubble point pressure	5					
	X.	Sub capillary pores						
8	A n a ¹	wall in the Nemelan	Field is meda	aing at a state	lized re	to of 600 STD/day of		
0		well in the Nameless						
		lized bottom-hole flow						
		p test data indicates the						
		d a uniform thickness of The following addition			area or a	approximatery 40		
		The following addition $25 \text{ ft } \Lambda = 40 \text{ parents}$	iai uata is ava	naule.				
	rw = 0.25 ft A = 40 acres Bo = 1.25 bbl/STB μ o = 2.5 cp Calculate the pressure profile (distribution) and list the pressure drop across 1 ft intervals from rw to 1.25 ft 4 to 5 ft 10 to 20 ft 00 to 100 ft and 744 to 745 ft						10	CO4
							10	
	intervals from rw to 1.25 ft, 4 to 5 ft, 19 to 20 ft, 99 to 100 ft, and 744 to 745 ft.							
		OR						
	Descri		ns behind De	cline Curve Δ	nalveie	Explain the types of		
		1	the basic assumptions behind Decline Curve Analysis. Explain the types of the behavior with appropriate relationship curves.					
9	During a PVT experiment a crude oil sample was placed in a variable volume cell							C03
	and its initial bubble point pressure was determined. The pressure in the cell was					10		
	then decreased in 3 steps and the volume of liquid and gases were recorded. After							
	recording the value at each pressure the gas was purged out of the cell but all of the liquid retained. The temperature was kept constant at 15°C. The following data were							
	-	recorded:						
	Pressure (kpa)Volume of liquidVolume of gasz-factor							
		(ml)	ie or nquiu	released(ml)	0	2 100101		
	3000		5		/			
	2000			24.97		0.886		
	10000 159.85 35.35 0.932							
	1000			3981.35		1		
	101.3	14/.83)	3701.33		1		

	b. Calculate sol	VF at 30000kpa, 2000 ution GOR at 30000k VF at 20000 kpa.	00kpa and 10000kpa. pa, 20000kpa and 10000kpa.		
		S	ECTION-C		
10	Treating the reservor expression which oc Determine the relative contribution to the p				
	OR A combination-drive reservoir contains 10 MMSTB of oil initially in place. The ratio of the original gas-cap volume to the original oil volume, i.e., m, is estimated as 0.25. The initial reservoir pressure is 3000 psia at 150°F. The reservoir produced 1 MMSTB of oil, 1100 MMscf of 0.8 specific gravity gas, and 50,000 STB of water by				
	the time the reservoi	the time the reservoir pressure dropped to 2800 psi. The following PVT is available:			
	Da hhl/CTD	3000 psi	2800 psi	20	CO5
	Bo, bbl/STB	1.58	1.48 850		
	Rs, scf/STB Bg, bbl/scf	1040	0.00092		
	Bg, bbl/STB	1.58	1.655		
	Bw, bbl/STB	1.30	1		
	Swi =0.20 cw =1.5x Calculate: a. Cumulative water b. Net water influx c. Primary driving ir				
11	The following production data are available from a dry gas field:				CO6
	Qt (MMscf/day)				
	320	Gp (MMscf) 16,000	1		
	336	32000			
	304	48000	1		
	309	96000	1		
	272	160000			
	248	240000			
	208	304000			
	197	352000			
	184	368000			
	176	384000			
	184	400000		1	1

80 MMscf/day	
(b) Extra time to reach 80 MMscf/day	