Name:

Enrolment No:

Semester

Max. Marks: 100

Time

: VII

: 03 hrs.

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018

Programme Name: B.TECH-ADE

Course Name : Modeling and Simulation

Course Code : ADEG-436

Nos. of page(s) : 02

Instructions: Attempt All Questions from Section A, B and C. One question from section B and C have an internal Choice. Assume any Missing Data if required.

S. No.		Marks	СО
Q1	Discuss various characteristics of system.	4	CO1
Q2	Why black box approach is important in modeling and simulation.	4	CO2
Q3	How do the Lumped mass approximation helps in approximation of complex thermal engineering problem in modeling.	4	CO3
Q4	Classify various optimization problems.	4	CO4
Q5	Compare advantages, disadvantages and pitfalls of simulation.	4	CO5
	SECTION B		
Q6	The temperature variation with height in the large oil fires in Kuwait was an important consideration. Measurements of the temperature T versus the height H were taken and presented in dimensionless terms as HH12345T10.07.96.96.35.9It is given that T varies as T =A(H) ^a . Using linear regression methods, as applied to such equations, obtain the values of A and a from these data. How accurate is your correlation	10	СО3
Q7	Summarize various steps to design or analyze a complex system by simulation with flow chart.	10	CO5
Q8	Two frictionless rigid bodies (carts) A and B connected by three linear elastic springs having spring constants k1, k2 and k3 (as shown in figure given below). The springs are at their natural positions when applied force P is zero. Find the displacement x1 and x2 by using principal of minimum potential energy.	10	CO4

	$ \begin{array}{c} $		
Q9	 A beam of uniform rectangular cross section is to be cut from a log having circular section of diameter 4a. The beam has to be used as a cantilever beam (length is fixed) to carry concentrated load at the free end. Find the dimensions of the beam that corresponds to maximum tensile(bending) stress carrying capacity. OR a) Interpret about Positive and negative definite in Hessian Matrix. Discuss indefinite case also. b) Find the extreme points of the function given below and calculate Relative minimum and maximum with nature of Hessian determinant. f(x1,x2)=3x₁³+6x₂³+2x₁²+4x₂²+8 	10 [5+5]	CO4
	SECTION-C		
Q10	 A. Find the dimensions of a cylindrical tin (with top and bottom) made up of sheet metal to maximize its volume such that the total surface are is equal to 72π. B. Minimize f=kx⁻²y⁻¹ Subject to g(x, y)=x²+y²-36a²=0 Find the solution using a. Method of Constrains Variations b. Method of Lagrange Multiplier 	[10+10]	CO4
Q11	For the following elements a) Problem Statement b) Program Organization and Logic c) Relevant Flow Charts d) Output and Discussion Perform, Simulation of an Inventory System. OR Using-Server Queueing System using.	20	CO5