Name:	Name: Enrolment No:						
Enrolment No:							
	UNIVERSITY OF PETRO	OLEUM AND ENERGY STUDIES					
End Semester Examination, December 2018							
Course: Introduction to Modelling & Simulation Semester: VII Programme: B. Tech MSENT							
Time: 03 hrs Max. Marks:			100				
Instruct	tions: Choice in Q 9 and Q 11	ECTION A					
<i>a</i>							
S. No.			Marks	CO			
Q 1	a) According to Neumann's Principle, the sy of a crystal must include the symmetry eler						
	of a crystal must menude the symmetry eler	lients 01	4	CO1			
	b) All II nd rank tensors have the	symmetry.					
0.2	a) In ideal solution model the enthelpy of	niving is equal to					
Q 2	a) In ideal solution model, the enthalpy of r						
	b) In the diffusional model of a heteroge		4				
	to low	·					
Q 3	a) Inflection points, which denote the spino	dal region, occur where					
-	is equal to zero.						
	b) A concave curve is represented by	greater than zero	4				
	b) It concurre curve is represented by	grouter than 2010.					
Q 4	a) For a binary solution, a free energy curv						
	range indicates	solubility.					
	b) Solving the time dependent diffusion	nal equation requires number of	4				
	boundary conditions and number of	initial conditions.					
Q 5	TRUE/FALSE						
-							
	a) The formation of a homogenous system dependent diffusion equation (Fick's 2 nd lat		4				
	appendent diffusion equation (Flex 5.2 - Ia		•				
	b) Implicit methods are more accurate than	explicit methods.					

Q 6	 Write the algorithm/flowchart for a computer program that performs coordinate transformation of a vector. Following input is taken from the user: a) Vector to be transformed: (a1, a2, a3) b) New coordinate system i.e. rotation angle of the coordinate system <u>Note:</u> There is no translational movement of the coordinate system, and the new coordinate system is obtained by a finite rotation of the original coordinate system. 	10	CO4
Q 7	Enumerate the thermodynamic properties represented by points 1,2,3,4,5 & 6. Briefly describe the physical significance of each of these properties.	10	
Q 8	For a solid solution consisting of A and B components, model the free energy of this system at any temperature (T) for any composition (X_B) . Bond Dissociation Energies: A-A = 300 kJ/mol, B-B = 200 kJ/mol, A-B = 300 kJ/mol Both A and B have FCC crystal structure. Assume that the system behaves as a regular solution.		
Q 9	 a) Briefly define point group symmetry. Answer any one of the following: b) Write down the point group symmetry elements for a cubic crystal. 		
	OR c) According to the group theory, enumerate the properties that must be satisfied for a set of elements to be classified as a group.		

	SECTION-C		
Q 10			CO5
Q 11	Consider 1-D diffusion along X-direction in a finite slab as shown below: x=0 i=0 x=L i=n	5	
	 Using finite difference implicit method, model the concentration profile i.e. C(i,t) of this system for any one of the following set of conditions: A) <u>Boundary Conditions</u>: Periodic Boundary Condition <u>Initial Condition</u>: C(i,0) = 0.8 cos(2πi/n) B) <u>Boundary Conditions</u>: Dirichlet Boundary Condition → C(0,t)=0 & C(n,t)=0 <u>Initial Condition</u>: C(i,0) = 0.8 sin(2πi/n) 	20	