Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018

Course: Design of Hydraulic Structures

Programme: B Tech Civil Engineering

Semester: VII Time: 03 hrs. Course Code: CEEG 421

Max. Marks: 100

Instructions: Write your assumptions carefully and attempt all the questions

Set	A

	SECTION A		
S. No.		Marks	CO
Q1.	Spillway is the safety valve of a dam. Comment on the statement.	4	CO1
Q2.	Determine the thickness of the arch dam of outside diameter 12m at a depth of 30m, compressive strength of concrete is 2500 kN/m^2 .	4	CO2
Q3.	Explain the post construction measures for silt control in reservoirs.	4	CO3
Q4.	What are the objectives of river training?	4	CO3
Q5.	What is cavitation? How does it lead to pitting?	4	CO4
	SECTION B	I I	
Q6.	A 25 MW hydel plant working under a head of 35m at 30 % load factor is functioning as a peak load plant. Calculate the discharge required if it has to function as a base load station, with an overall efficiency of 80%. What will be the maximum load factor if the discharge is 40 cumecs?	10	CO4
Q7.	With the help of a neat sketch, explain the design and specifications of the guide banks.	10	CO3
Q8.	A common load is shared by two hydel stations; one being a base load station with 20 MW capacity and the other being a standby with 25 MW capacity. The yearly output of the standby station is 10 x 10 ⁶ kWh and that of base load plant as 110 x 10 ⁶ kWh. The peak load taken by stand by station is 12 MW and the station works for 2500 hours during the year. The base load station takes a peak load of 18 MW. Find out: a) Annual load factors for both stations b) Plant use factors for both stations c) Capacity factors for both stations	10	CO4
	OR		
Q8.	 A hydro-electric power plant based on the Loch Sloy in Scotland has an effective head of 250 m. If the flow rate of 16 m3/s can be maintained, determine: a) The total power input to the turbine assuming a hydraulic efficiency of 98%; b) The pressure difference across the turbine. 	10	CO4

Q9.	a) E b) W	stimate /hat wo	infall at station A cover the annual rainfall with ould be the probability on ag 100 cm.	n return	periods of 10 and 5	0 years		
		Year	Annual Rainfall (cm)	Year	Annual Rainfall (cm)			
		1960	130	1971	90			
		1961	84	1972	102	-		
		1962	76	1973	108		10	
		1963	89	1974	60		10	CO3
		1964	112	1975	75			
		1965	96	1976	120			
		1966	80	1977	160			
		1967	125	1978	85	_		
		1968	143	1979	106	_		
		1969	89	1980	83	_		
		1970	78	1981	95			
				SECT	ION-C			
				SECI	IUN-C			
Q10.	The follo	wing d	ata refer to the non-ove	rflow se	ection of a gravity d	am:	20	C01
		ЪI	C (C (1 1	215				
			of top of the dam	= 315				
			of bottom of the dam					
			reservoir level	= 312				
		Top	width of the dam	= 12 n	n			
	thereafter	r, the d	is vertical. Downstre ownstream face slopes a by from the upstream face	at 0.7 (F	-			
		Redu	weight of masonry action of uplift at draina ficient of friction betwe	-	= 50%	n material = 0.8		
	Determin	ne:						
		(i)	Factor of safety again	nst over	turning;			
		(ii)	Factor of safety again		-			
		(iii)	Maximum pressure of		-			
		(iv)	Maximum principal			e dam at the base		
	1	(1)/	maximum principal	ou coo II	i uiv masoni y ui ti	ie aann at the base.		

	OR		
Q10.	Design the practical profile of a gravity dam made of stone masonry given the		
	following data: R.L. of base of dam =190 m R.L. of HFL of reservoir =230 m Specific Gravity of masonry =2.4 Safe compressive stress in masonry = $1200 kN/m^2$	20	CO1
Q11.	Design a suitable section for the overflow portion of a concrete gravity dam having the downstream face sloping at a slope of 0.7H: 1V. the design discharge is 10000 cumecs. The height of the spillway crest is kept at RL 204.0 m. The average river bed level at the site is 100 m. The spillway length consists of 6 spans having a clear width of 10m each.	20	CO2

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018

Course: Design of Hydraulic Structures Programme: B Tech Civil Engineering Max. Marks: 100

Semester: VII Time: 03 hrs. Course Code: CEEG 421

Instructions: Write your assumptions carefully and attempt all the questions

Set B

SECTION A

	SECTIONA		
S. No.		Marks	CO
Q1.	How does the coefficient of discharge varies with the submergence of the spillway by the tail water?	4	CO1
Q2.	What do you understand by E-flows in case of reservoir planning? Explain its relevance.	4	CO2
Q3.	Explain the role of density currents in silting of reservoirs.	4	CO3
Q4.	Give a typical layout of diversion headwork.	4	CO3
Q5.	Explain the function of draft tube in turbine.	4	CO4
	SECTION B		
Q6.	 A run-off the river scheme plant with an installed capacity of 5000 kW operates at 28% load factor when it serves as a peak load station: a) What should be the minimum discharge in the stream, so that it may serve as a base load station? The plant efficiency may be assumed to be 100% when working under a head of 20m. b) Also calculate the maximum load factor of the plant when the discharge in the stream is 35 cumecs. 	10	CO4
Q7.	With the help of a neat sketch, explain the different types of groynes.	10	CO3
	OR		
Q7.	Explain the design and specifications of levee section for different heights.	10	CO3
Q8.	A proposed hydropower plant to be built using a reservoir with a typical head of 10m and estimated power of 30 MW. You are given the task to select an appropriate type of turbine for this site if the generator requires the turbine to run at a fixed speed of 60 rpm.	10	CO4
Q9.	A proposed reservoir has a capacity of 500 ha-m. The catchment area is 125 km ² , and the annual streamflow averages 12 cm of runoff. If the annual sediment production is $0.03ha$ -m/ km ² , what is the probable life of reservoir before its capacity is reduced by 10 % of its initial capacity.	10	CO3

Q10.	$\frac{C/l 0.01 0.02 0.04 0.06 0.08 0.1 0.2 0.3 0.5 0.7}{\mathbf{q}\% 43 60 74 80 84 87 93 95 96 97}$ SECTION-C Analyze the stability of given gravity dam (Figure 1) for the following conditions: Friction coefficient between concrete-foundation is 0.70, respectively. Allowable shear stresses in concrete are 2700 kN/m2, and 2400 kN/m2, respectively. Allowable compressive stress in foundation material is 2700 kN/m2. Take specific weights of concrete and water as 24 kN/m3, and 10 kN/m3, respectively. Consider earthquake forces as well.	20	CO1
	OR		
Q10.	 a) Test the stability of the dam of 36m height with 9m crest width, 3m free board, u/s slope 3H:1V, d/s slope 2. 5H:1V, φ = 26°, C= 2440 kg/m². Assume the unit weights as required b) Derive an expression for the location of phreatic line by analytical method with downstream filter. 	10+10	CO1
Q11.	a) A rectangular channel carrying a supercritical stream is to be provided with a hydraulic jump type of energy dissipater. It is desired to have an energy loss of 10.0 m in the hydraulic jump when the inlet Froude number is 17. What	10+10	CO2

1 1		
b	b) In a hydraulic jump taking place in a horizontal apron below an Ogee shaped	
	weir the discharge per unit width is $1 \text{ m}^3/\text{s/m}$ and the energy loss is 5 m.	
	Estimate the depths at the toe and heel of the jump.	