Name: Enrolment No:			
Course: Design of Hydraulic Structures Semester: VII Programme: B Tech Civil Engineering Time: 03 hrs. Max. Marks: 100 Course Code: CEEG Instructions: Write your assumptions carefully and attempt all the questions			
Set A			
SECTION A			
S. No.		Marks	CO
Q1.	Spillway is the safety valve of a dam. Comment on the statement.	4	CO1
Q2.	Determine the thickness of the arch dam of outside diameter 12 m at a depth of 30 m , compressive strength of concrete is $2500 \mathrm{kN} / \mathrm{m}^{2}$.	4	CO2
Q3.	Explain the post construction measures for silt control in reservoirs.	4	CO3
Q4.	What are the objectives of river training?	4	CO3
Q5.	What is cavitation? How does it lead to pitting?	4	CO4
SECTION B			
Q6.	A 25 MW hydel plant working under a head of 35 m at 30% load factor is functioning as a peak load plant. Calculate the discharge required if it has to function as a base load station, with an overall efficiency of 80%. What will be the maximum load factor if the discharge is 40 cumecs?	10	CO4
Q7.	With the help of a neat sketch, explain the design and specifications of the guide banks.	10	CO3
Q8.	A common load is shared by two hydel stations; one being a base load station with 20 MW capacity and the other being a standby with 25 MW capacity. The yearly output of the standby station is $10 \times 10^{6} \mathrm{kWh}$ and that of base load plant as 110×10^{6} kWh . The peak load taken by stand by station is 12 MW and the station works for 2500 hours during the year. The base load station takes a peak load of 18 MW. Find out: a) Annual load factors for both stations b) Plant use factors for both stations c) Capacity factors for both stations	10	CO4
	OR		
Q8.	A hydro-electric power plant based on the Loch Sloy in Scotland has an effective head of 250 m . If the flow rate of $16 \mathrm{~m} 3 / \mathrm{s}$ can be maintained, determine: a) The total power input to the turbine assuming a hydraulic efficiency of 98%; b) The pressure difference across the turbine.	10	CO4

Q9.	The record of rainfall at station A covering a period of 22 years is given below. a) Estimate the annual rainfall with return periods of 10 and 50 years b) What would be the probability of an annual rainfall of magnitude equal or exceeding 100 cm .	10	CO3
SECTION-C			
Q10.	The following data refer to the non-overflow section of a gravity dam: R.L. of top of the dam $\quad=315 \mathrm{~m}$ R.L. of bottom of the dam $\quad=260 \mathrm{~m}$ Full reservoir level $\quad=312 \mathrm{~m}$ Top width of the dam $\quad=12 \mathrm{~m}$ Upstream face is vertical. Downstream face is vertical upto R.L. 304 m ; and thereafter, the downstream face slopes at $0.7(\mathrm{H}): 1(\mathrm{~V})$ upto base. Drainage holes are located 8 m away from the upstream face. Unit weight of masonry $\quad=23 \mathrm{kN} / \mathrm{m}^{3}$ Reduction of uplift at drainage hole $=50 \%$ Coefficient of friction between masonry and foundation material $=0.8$ Determine: (i) Factor of safety against overturning; (ii) Factor of safety against sliding (iii) Maximum pressure on foundation (iv) Maximum principal stress in the masonry of the dam at the base. Consider only the forces due to water thrust, uplift, earthquake (inertial forces due to weight of masonry only) and the selfweight.	20	CO1

	OR		
Q10.	Design the practical profile of a gravity dam made of stone masonry given the following data:	20	CO1
Q11.	Design a suitable section for the overflow portion of a concrete gravity dam having the downstream face sloping at a slope of $0.7 \mathrm{H}: 1 \mathrm{~V}$. the design discharge is 10000 cumecs. The height of the spillway crest is kept at RL 204.0 m . The average river bed level at the site is 100 m . The spillway length consists of 6 spans having a clear width of 10 m each.	20	CO 2

Name: Enrolment No:			
Course: Design of Hydraulic Structures Semester: VII Programme: B Tech Civil Engineering Time: 03 hrs. Max. Marks: 100 Course Code: CEEG 421 Instructions: Write your assumptions carefully and attempt all the questions			
Set B			
SECTION A			
S. No.		Marks	CO
Q1.	How does the coefficient of discharge varies with the submergence of the spillway by the tail water?	4	CO1
Q2.	What do you understand by E-flows in case of reservoir planning? Explain its relevance.	4	CO2
Q3.	Explain the role of density currents in silting of reservoirs.	4	CO3
Q4.	Give a typical layout of diversion headwork.	4	CO3
Q5.	Explain the function of draft tube in turbine.	4	CO4
SECTION B			
Q6.	A run-off the river scheme plant with an installed capacity of 5000 kW operates at 28% load factor when it serves as a peak load station: a) What should be the minimum discharge in the stream, so that it may serve as a base load station? The plant efficiency may be assumed to be 100% when working under a head of 20 m . b) Also calculate the maximum load factor of the plant when the discharge in the stream is 35 cumecs.	10	CO4
Q7.	With the help of a neat sketch, explain the different types of groynes.	10	CO3
	OR		
Q7.	Explain the design and specifications of levee section for different heights.	10	CO3
Q8.	A proposed hydropower plant to be built using a reservoir with a typical head of 10 m and estimated power of 30 MW . You are given the task to select an appropriate type of turbine for this site if the generator requires the turbine to run at a fixed speed of 60 rpm .	10	CO4
Q9.	A proposed reservoir has a capacity of 500 ha- m . The catchment area is $125 \mathrm{~km}^{2}$, and the annual streamflow averages 12 cm of runoff. If the annual sediment production is $0.03 \mathrm{ha}-\mathrm{m} / \mathrm{km}^{2}$, what is the probable life of reservoir before its capacity is reduced by 10% of its initial capacity.	10	CO3

are the sequent depths of this jump?
b) In a hydraulic jump taking place in a horizontal apron below an Ogee shaped weir the discharge per unit width is $1 \mathrm{~m}^{3} / \mathrm{s} / \mathrm{m}$ and the energy loss is 5 m . Estimate the depths at the toe and heel of the jump.

