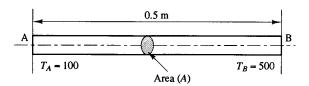
Name: Enrolm					
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES					
Course Name : Computational Fluid Dynamics Tim		Semester Time Max. Mark	: VII : 03 hrs. s: 100		
	SECTION A				
S. No.		Marks	CO		
Q 1	List the various physical boundary conditions encountered in a non-isotherm fluid flow.	al 4	CO1		
Q 2	Discuss the advantages and disadvantages of unstructured grids over structure grids.	ed 4	CO3		
Q 3	Classify the following equations as hyperbolic, parabolic or elliptic. a. $\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}$ b. $\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0$ c. $\frac{\partial^2 \emptyset}{\partial x^2} + \frac{\partial^2 \emptyset}{\partial y^2} = 0$ d. $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$	4	CO1		
Q 4	 Consider the function φ(x, y) =e^x+e^y. a. Calculate the values of ∂φ/∂x and ∂φ/∂y at a point (x,y) = (1,1) usin first order forward difference, with Δx = Δy =0.1. b. Calculate the values of ∂φ/∂x and ∂φ/∂y at a point (x,y) = (1,1) usin second order central difference, with Δx = Δy =0.1. 		CO3		
Q 5	Formulate any two approximations for the evaluation surface integral of flux	es 4	CO2		
	over the east face of a two-dimensional control volume.				
	SECTION B				
Q 6	Define the CDS interpolation scheme for the evaluation of fluxes at face cent	re 10	CO2		

	using the nodal values on a structured finite volume grid. Find the order of		
	accuracy of this scheme and discuss its advantages and disadvantages.		
Q 7	Illustrate the strong and weak forms of the weighted residual formulation for	10	CO2
	finite element discretization. Justify that a proper choice of weight function		
	makes the weighted residual formulation equivalent to Finite difference or		
	Finite Volume Methods.		
	OR		
	Define shape functions as used in Finite Element Method. Deduce shape		
	functions for a one-dimensional quadratic element for the value of a function at		
	any location in the domain in terms of nodal values.		
Q 8	Illuminate the need of a body fitted coordinate system for the solution of	10	CO3
	governing flow equations using finite difference method. Explain thus, the		
	philosophy of elliptic grid generation around an airfoil.		~ ~ ~
Q 9	Discuss the explicit McCormack time marching algorithm for the solution of	10	CO2
	transient Euler equations in 2-dimensions. SECTION-C		
Q 10	Consider a two-dimensional square plate ABCD with edges AB and CD	20	C05
Q IU	maintained at temperatures of 200 $^{\circ}K$ and 100 $^{\circ}K$ respectively. The other two	20	003
	edges DA and BC are also maintained at temperatures of 200 $^{\circ}K$, except at the		
	corners C and D. Find the steady state temperatures of at least 9 locations on the		
	plate. Take $AB=BC=CD=DA=4$ cm. Use pure Gauss-Seidel relaxation scheme		
	for at least 4 iterations.		
	The two-dimensional steady state heat conduction is governed by		
	$\partial^2 T = \partial^2 T$		
	$\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$		
	OR		
	Consider a large flat plate of thickness $L = 2$ cm with constant thermal		
	conductivity $k = 0.5$ W/m.K and uniform heat generation $q = 1000$ kW/m ³ . The		
	opposite faces A and B, as shown in figure below at maintained at temperatures		
	of 100 °C and 200 °C respectively. Assuming the heat conduction to be one-		
	dimensional, estimate the steady state temperature distribution in the plate.		

	A A T_A T_B		
	The governing equation can be assumed as $2 \left(-2\pi \right)$		
	$\frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + q = 0$		
Q 11	Derive the <i>modified equation</i> that emanates from the first order forward in time	20	CO4
	and backward in space discretization of the first order wave equation given		
	below.		
	$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0$		
	Discuss the nature of dominating error for the above discretization and suggest		
	means to minimize them.		

Name:

Enrolment No:



UNIVERSITY OF PETROLEUM AND ENERGY STUDIE				
	End Semester Examination, December 2018			
Course Course Nos. of	rogramme Name:B. Tech. ASESemesterourse Name:Computational Fluid DynamicsTimeourse Code:GNEG 401Max. Maos. of page(s):04istructions:Assume any missing data appropriately.		: 03 hrs.	
	SECTION A			
S. No.		Μ	arks	CO
Q 1	Sketch the various models of fluid flow used for derivation of governing equa	tions.		
	Write down the forms of equations that emanate from these models on application	ations	4	C O 1
	conservation laws.		7	COI
01		flarr		
Q 2	Consider the viscous flow of air over a flat plate. At a given station in the			
	direction, the variation of the flow velocity, u , in the direction perpendicular	to the		
	plate (the y direction) is given at discrete grid points equally spaced in y direction	ection		
	with $\Delta y = 2.54$ mm.			
	y (mm) u (m/s)			
	0 0			
	2.54 45.72			
	5.08 87.41			
	7.62 125.0		4	CO3
	Imagine that the values of \boldsymbol{u} listed above are discrete values at discrete grid \boldsymbol{r}	points		
	ocated at $y = 0, 2.54, 5.08$ and 7.62 mm the same nature as would be obtained from			
	a numerical finite difference solution of the flow field. For viscosity coefficie			
		-		
	=1.7895 x 10^{-5} kg/m-s, using these discrete values; Calculate the shear stress	at the		
	wall τ_w three different ways, namely:			
	a. Using a first order one sided difference			
	b. Using the second order one sided difference			
Q 3	Define <i>numerical diffusion and dispersion</i> . Discuss the effect of numerical diff	ision	4	CO 4
~~	and dispersion on the solution of the one-dimensional scalar wave equation usir		•	
		-		
	explicit Forward in Time and Backward in Space (FTBS) scheme. Suggest me	thods		

	to alleviate the diffusive error.		
Q 4	Write formulae for approximation of surface integrals of fluxes over a control volume face using following methods. a. Mid-point method b. Trapezoidal Method c. Simpson's Method	4	CO3
Q 5	Elucidate the need of grid and equation transformation for the solution flow over complex geometries using finite difference method. SECTION B	4	CO3
Q 6	Consider the numerical solution of steady viscous flow over a flat plate using a finite difference scheme. To calculate the details of this flow near the surface, very fine mesh, stretched in transverse direction is required as shown in figure below. y $\int_{x} \frac{\Delta x}{\Delta y} \frac{\Delta x}{\Delta$	10	CO3
Q 7	Consider the 2-dimensional transient heat conduction equation given below. The	10	CO2
	Crank-Nicolson discretization of the equation results in a pentadiagonal system of		

$\frac{\partial T}{\partial t} = \alpha \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right)$		
OI (OX OY)		
Discuss the solution of Laplace equation in 2-dimensions using an explicit five point		
Gauss-Seidel Scheme point iterative scheme. Suggest modifications that can	10	CO2
Elaborate the following interpolation schemes for the evaluation of flux values at the		
center of a control volume face using the flux values at computational nodes for a		
structured finite volume grid.		
a. Central Differencing Scheme		
b. Hybrid Scheme		
Discuss the advantages, disadvantages and the order of accuracy of each of these	10	CO2
schemes.		
OR		
Define the UPWIND interpolation scheme for the evaluation of fluxes at face centre		
using the nodal values on a structured finite volume grid. Find an expression for the		
artificial diffusivity introduced by this scheme.		
SECTION-C		
Deduce the <i>modified equation</i> for the solution of the first order wave equation using		
Lax Method given by		
$\frac{u_j^{n+1} - (u_{j+1}^n + u_{j-1}^n)/2}{\Delta t} + c \frac{u_{j+1}^n - u_{j-1}^n}{2 \Delta x} = 0$	20	CO4
Hence, discuss the effect of the dominating error on the solution obtained		
Consider the problem of source-free heat conduction in an insulated rod whose ends	20	CO5
are maintained at constant temperatures of 100 °C and 500 °C respectively. The one-		
dimensional problem sketched in Figure below, is governed by		
$\frac{d}{dx}\left(k\frac{dT}{dx}\right) = 0$		
	Gauss-Seidel Scheme point iterative scheme. Suggest modifications that can accelerate this scheme. Elaborate the following interpolation schemes for the evaluation of flux values at the center of a control volume face using the flux values at computational nodes for a structured finite volume grid. a. Central Differencing Scheme b. Hybrid Scheme Discuss the advantages, disadvantages and the order of accuracy of each of these schemes. <i>OR</i> Define the UPWIND interpolation scheme for the evaluation of fluxes at face centre using the nodal values on a structured finite volume grid. Find an expression for the artificial diffusivity introduced by this scheme. SECTION-C Deduce the <i>modified equation</i> for the solution of the first order wave equation using Lax Method given by $\frac{u_j^{n+1} - (u_{j+1}^n + u_{j-1}^n)/2}{\Delta t} + c \frac{u_{j+1}^n - u_{j-1}^n}{2\Delta x} = 0$ Hence, discuss the effect of the dominating error on the solution obtained. Consider the problem of source-free heat conduction in an insulated rod whose ends are maintained at constant temperatures of 100 °C and 500 °C respectively. The one-dimensional problem sketched in Figure below, is governed by	Gauss-Seidel Scheme point iterative scheme. Suggest modifications that can accelerate this scheme.10Elaborate the following interpolation schemes for the evaluation of flux values at the center of a control volume face using the flux values at computational nodes for a structured finite volume grid.10a. Central Differencing Scheme b. Hybrid Scheme10Discuss the advantages, disadvantages and the order of accuracy of each of these schemes.10Define the UPWIND interpolation scheme for the evaluation of fluxes at face centre using the nodal values on a structured finite volume grid. Find an expression for the artificial diffusivity introduced by this scheme.10Deduce the modified equation for the solution of the first order wave equation using Lax Method given by20Hence, discuss the effect of the dominating error on the solution obtained. Consider the problem of source-free heat conduction in an insulated rod whose ends are maintained at constant temperatures of 100 °C and 500 °C respectively. The one- dimensional problem sketched in Figure below, is governed by20

Calculate the steady state temperature distribution in the rod. Thermal conductivity k equals 1000 W/m/K; cross-sectional area A is 10 x 10⁻³ m². Use at least 5 control volumes with appropriate interpolation scheme.

OR

Consider square plate PQRS whose edges PQ, QR and SP are maintained at temperature of 300 °K whereas the edge RS is maintained at 100 °K. Find the steady state temperatures of at least 9 locations on the plate. Take PQ=QR=RS=SP=4 cm. Use a point iterative relaxation scheme for at least 4 iterations with an over-relaxation factor of 1.2.

The two-dimensional steady state heat conduction is governed by

 $\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0$