Name: Enrolment No:			
Course Progra Time: Instruc	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018 Mechanics and Mechanism Me: M. Tech. (A\&RE) Semester: I hrs. Max. Marks		
SECTION A			
S. No.		Marks	CO
Q. 1	Three forces $\mathrm{F}_{1}, \mathrm{~F}_{2}$ and F_{3} are acting at points A, B and C as shown in figure below. $\triangle \mathrm{OAB}$ is an equilateral triangle of 1 m side. Point C is the mid-point of OA . Find the simplest resultant of this force system at origin O . Force F_{3} is perpendicular to OA.	05	CO1
Q. 2	Describe various types of joints with appropriate diagrams. Explain degree of freedom.	05	$\mathrm{CO5}$
Q. 3	A compound rod is made up of steel, AB portion, and aluminium, portion BC . Length of $A B$ is 1 m and of $B C$ is 1.5 m . Diameters of $A B$ and $B C$ are 7.0 mm and 10.5 mm respectively. Modulus of Elasticity of aluminium and steel are 70 GPa and 210 GPa respectively. Linear thermal expansion coefficients of aluminium and steel are $23.0 \mu \mathrm{~m} / \mathrm{m}^{\circ} \mathrm{C}$ and $11.5 \mu \mathrm{~m} / \mathrm{m}^{\circ} \mathrm{C}$ respectively. At room temperature there are no forces in the rod. If heated by $50{ }^{\circ} \mathrm{C}$ above the room temperature then find the stresses in $A B$ and $B C$.	05	CO 4

Q. 4	For the figure shown below, find the resultant of F1 and F2 at A. Calculate the moment of this resultant force about a line that joins origin of the coordinate system to the point C .	05	CO1
SECTION B			
Q. 5	Determine the surface area and volume of the container shown in figure below using the theorem of Pappus \& Guldinus. Diameters AJ and EF are 1 m and 0.5 m respectively. Lengths of $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DE are $1.5 \mathrm{~m}, 2.0 \mathrm{~m}, 2.5 \mathrm{~m}$ and 0.5 m respectively. XX is the axis of rotation. J C D E X $G \quad F$ D H	10	CO 2
Q. 6	A 2 m long cantilever beam has cross section of $20 \mathrm{X} 30 \mathrm{~mm}^{2} .20 \mathrm{~mm}$ is the vertical side while 30 mm is the horizontal width. When a downward point load is applied at the free end then the deflection of the beam at its mid-point is observed to be 0.4 mm . Determine the magnitude of the downward load applied. Young's Modulus of the material of the beam is 200 GPa .	10	CO 3
Q. 7	Derive the relationship between Shear Force, Bending Moment and Loading. OR Plot SFD and BMD for the simply supported beam shown below.	10	CO3

Q. 8	Find the degree of freedom for the mechanisms shown below, (A) (B)	10	CO5
SECTION-C			
Q. 10	Determine the moments of inertia $\mathrm{I}_{\mathrm{xx}}, \mathrm{I}_{\mathrm{yy}}$ and I_{xy} of the beam cross-sectional area shown below. The origin of the xy-coordinate system is at the center of the circular hole. If the axes are rotated by an angle of 30° then also determine these quantities. Also determine the principal plane.	20	CO2

Q. 11	If state of stress at a point is given by $\sigma_{x}=84 \mathrm{MPa}, \sigma_{y}=-30 \mathrm{MPa}, \tau_{x y}=-32 \mathrm{MPa}$. Determine principal stresses, principal plane and maximum shear stress. OR A 4 kNm torque T is applied at end A of the composite shaft shown. Knowing that the modulus of rigidity is 77 GPa for the steel and 27 GPa for the aluminum, determine (a) the maximum shearing stress in the steel core, (b) the maximum shearing stress in the aluminum jacket, (c) the angle of twist at A.	20	CO4

