Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Program: M. TECH (HSE+DM) Semester –I

Subject (Course): Environmental Engineering & Management Max. Marks : 100
Course Code: HSFS7001 Duration : 3 Hrs

No. of page/s:3

SECTION A

(Attempt all the question, 5*4=20 Marks)

- 1. Water quality testing is an important part of environmental monitoring. When water quality is poor, it affects not only aquatic life but the surrounding ecosystem as well. Illustrate coagulation and flocculation with

 [CO3]
- 2. Compare Hazen's Law and Newton's law for settling velocity in sedimentation tank. [CO3]
- 3. Describe the following plume behavior in the following regime with a neat diagram

[CO5]

- a. Fanning
- b. Fumigation
- c. Looping
- d. Lofting & Trapping

4. Explain following:

[CO1,5]

- a) Great Smog of London.
- b) Eutrophication
- **5.** Discuss briefly about designing aspect of landfill with standard dimension for solid waste management. [CO6,7]

SECTION B

(Attempt only four question, 4*10=40 Marks)

6. The Dilution Factor P for an unseeded mixture of waste and water is 0. 030. The DO of the mixture is initially 9.0mg/L, and after five days, it has dropped to 4.0mg/L. The reaction rate constant K has been found to be 0.20 days⁻¹.

[CO3]

- i. What is the five-day BOD of the waste?
- ii. What would be the ultimate carbonaceous BOD?
- iii. What would be the remaining Oxygen demand after five days?

OR

7. Г	Describe followi a. Hypo chl b. Drawbac	=			[CO6]					
	Find the BOD of dilution factor K	a seeded water sample at =0.33.	$25^{\rm oc}$ and $30^{\rm oc}$ if it has	s 300mg/l ultimate BOD	at 20 °C. Consider [CO3]					
3 7	800ml BOD bott	ntaining just seeded dilution tele filled with 15 ml of was the same time. What	stewater and the rest se	eeded dilution water exp	•					
		following Vind rose coping (EIA)	with	their	application.					
11		SECTION-C	(Atten	npt only two question,	2*20=40 Marks)					
11.	I. Enumera [CO7,4]	te	the		following:					
	a)b)c)d)	m								
12.	untreated India wo wastewat	Treatment of our nation's wastewater is a priority. Currently, India dumps over 150 billion liters of untreated and undertreated wastewater (sewage) into our waterways every year. The Government of India worked with the provinces and engaged municipalities and others to strengthen the country's wastewater treatment and management system. Explain sewage/wastewater treatment plant with the help of flow diagram. [CO 7,3,1]								
12.	is estimate height is a) To b) To									
	II. Discuss [C1,CO7		the al act		following:					
	1.	radonal Ofeen utbull	ai act							

II. Adiabatic lapse rate and its derivation

OR

13. During the designing of an equalization basin, an environmental engineer observed the fluctuation between time and flow rate for supply water. The fluctuation was increasing 2% gradually from zeroth hour to 12th hour and from 13th hour to 24th hour it was gradually decreasing by 2%. Determine the inline storage volume of the equalization basin if the initial flow rate at zeroth hour was 0.0492 m³/s.

Note: The proposed supply system is variable in nature and given flow rate is maximum [CO3,4]

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Program: M. TECH (HSE+DM) Semester –I

Subject (Course): Environmental Engineering & Management
Course Code: HSFS7001

Max. Marks : 100
Duration : 3 Hrs

No. of page/s:3

SECTION A

(Attempt all the question, 5*4=20 Marks)

1. Describe the following plume behavior in the following regime with a neat diagram

[CO5]

a. Fanning b.Fumigation c.Looping d.Lofting & Trapping

2. Explain following:

[CO1,5]

- a) Great Smog of London.
- b) Eutrophication
- **3.** Water quality testing is an important part of environmental monitoring. When water quality is poor, it affects not only aquatic life but the surrounding ecosystem as well. Illustrate coagulation and flocculation with

 [CO3]
- **4.** Compare Hazen's Law and Newton's law for settling velocity in sedimentation tank. [CO3]
- **5.** Discuss briefly about designing aspect of landfill with standard dimension for solid waste management. [CO 6,7]

SECTION B

(Attempt only four question, 4*10=40 Marks)

- 6. A test bottle containing just seeded dilution water where its DO level drop by 1 mg/l in a 5-day test. A 300ml BOD bottle filled with 15 ml of wastewater and the rest seeded dilution water experiences a drop of 7.2mg/l in the same time. What would be the 5-day BOD of the wastewater? [CO3]
- 7. Explain following with their application. [CO6]

Cons		di	ilution		factor			K=0.33.			
[CO3 9. The I	-	otor D for an unsac	adad mixtura of	waata and w	ntor is 0 00	20. The DO o	f tho	miytura ia			
	9. The Dilution Factor P for an unseeded mixture of waste and water is 0. 030. The DO of the mixture is initially 9.0mg/L, and after five days, it has dropped to 4.0mg/L. The reaction rate constant K has been										
	found to be 0.20 days ⁻¹ .										
[CO3		<i>y</i>									
Ľ	-	hat is the five-day l	BOD of the waste	e?							
	ii. What would be the ultimate carbonaceous BOD?										
	iii. What would be the remaining Oxygen demand after five days?										
OR											
10. Desci	ribe followi	ng .						[CO6]			
	. Hypo chl	•						[]			
		ks of UV light Filtra	ation								
		SECTION		(Attem)	pt only two	question, 2*	20=4	0 Marks)			
11.											
I. A large power plant has a 200 m stack with inside diameter of 2m. The exit velocity of the stack gas is estimated at 8m/s at the temperature of 130°c. Ambient temperature is 25°c and the wind at stack height is estimated to be 3m/s. Estimate the total effective height of the stack. If a) The atmosphere is stable with temperature increasing at the rate of 3°C/km.											
		b) The [CO,7]	temperature	is		slightly		unstable.			
II.	Discuss			the				following:			
	[CO1,7]										
	I.										
	II.	Adiabatic lapse	rate and its deriv								
				OR ·							
time : hour volun	and flow ra and from 1 me of the eq The pro	te for supply water. I 3th hour to 24th had been supply water. I 3th sour to 24th had been supply systems.	The fluctuation nour it was graduhe initial flow rat	was increasirually decreasire at zeroth ho	ng 2% gradi ing by 2%. our was 0.04	Determine the details and the determine the details are detailed as a superior of the details are detailed as a su	oth h	our to 12th ine storage			
13.											
I.	Enumera	te		the				following:			

8. Find the BOD of a seeded water sample at 25°C and 30°C if it has 300mg/l ultimate BOD at 20°C .

Wind rose

[CO7,4]

Scoping (EIA)

I.

II.

- a) Rapid & Comprehensive EIA
- **b)** Vermicomposting & Termigradation
- c) Gross primary productivity & Net primary productivity of ecosystem
- **d)** Atmospheric Stability
- II. Treatment of our nation's wastewater is a priority. Currently, India dumps over 150 billion liters of untreated and undertreated wastewater (sewage) into our waterways every year. The Government of India worked with the provinces and engaged municipalities and others to strengthen the country's wastewater treatment and management system. Explain sewage/wastewater treatment plant with the help of flow diagram. [CO7,1]