Name:					
Enrolment No:					
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018					
Progra		Semester	: I		
0		lime	: 03		
hrs.					
		Max. Mark	ks: 100		
	page(s) : 03				
Instru	ctions: Assume any missing data appropriately.				
	SECTION A				
S. No.		Marks	CO		
$\frac{Q1}{Q1}$	Define Riemann problems for scalar conservation equation and Euler equations.		CO1		
Q 2	The Riemann problem for a system of N equations is equivalent to N Riemann	n 4	C01		
	problems for linear advection equations. Prove this statement.				
Q 3	Construct a first-order upwind method for the linear advection equation using	g 4	CO3		
	flux splitting.				
Q 4	Evaluate the shock capturing ability of the conservative finite volume methods.	4	CO3		
Q 5	Find the conservative numerical flux $f_{i+1/2}^n$ of Godunov's first-order upwind	1 4	CO3		
	method.				
	SECTION B				
Q 6	Deduce the eigenvalues of the Jacobian Matrix A , for the one dimensional Eule	r 10	CO1		
	Equations given by				
	du du				
	$\frac{\partial \mathbf{u}}{\partial t} + A \frac{\partial \mathbf{u}}{\partial x} = 0$				
Q 7	Consider a normal shock wave moving inside a one-dimensional shock tube	e 10	C01		
	with pressures p_L and p_R on its left and right sides respectively. Find an	1			
	expression for the jump in internal energy across the discontinuity assuming the				
	shock moving through a perfect gas.				
	OR				
	A shock wave across which the pressure ratio is 1.15 moves down a duct into				
	still air at a pressure of 50 kPa and a temperature of 30 ^o C. Find the temperature	e			
	and velocity of the air behind the shock wave.				
		10			
Q 8	Assume that $u \neq 0$, $u \neq a$ and $u \neq -a$. Find an expression for the primitive	e 10	CO2		

	variables it terms of the components (f_1, f_2, f_3) of the conservative flux vector f		
	given by		
	$\mathbf{f} = \begin{bmatrix} \rho u \\ \rho u^2 + p \\ (\rho e_{\mathrm{T}} + p)u \end{bmatrix} = \begin{bmatrix} \rho u \\ \rho u^2 + p \\ \rho h_{\mathrm{T}}u \end{bmatrix}$		
Q 9	Apply Roe's scheme to the following system of equation	10	CO3
	$U_t + E_x = 0$ where $U = \begin{bmatrix} u \\ v \end{bmatrix} \qquad E = \begin{bmatrix} cu \\ cv \end{bmatrix}$		
	Thus, find the Roe averaged Jacobian matrix $[A]$.		
	SECTION C		
Q 10	Find the exact solution to the Riemann problem for the Euler equations at $t =$	20	CO2
	0.01 s if p_L = 100,000 N/m ² , ρ_L = 1 kg/m ³ , u_L = 100 m/s and p_R = 10,000 N/		
	m ² , $\rho_R = 0.125$ kg/m ³ , $u_R = -50$ m/s. Assume $\gamma = 1.4$ and $R = 287$ N.m/kg.K.		
	OR		
	Compute the left and right eigenvectors of the Jacobian matrix for the one		
	dimensional Euler Equations.		
Q 11	The flux-vector splitting method of Steger and Warming splits the system of	20	CO4
	equations		
	$U_t + E_x = 0$		
	into the following form: $= +i + E^{-i=0}i$		
	$U_t + E_x^{+\dot{\iota} + E_x^{-\dot{\iota} = 0\dot{\iota}}\dot{\iota}}$		
	If this method is applied to the system of equations		
	$U = \begin{bmatrix} u \\ v \end{bmatrix} \qquad E = \begin{bmatrix} cu \\ cv \end{bmatrix}$		
	where c is a constant, evaluate the following quantities:		
	a. [A]		
	b. $[\lambda^+], [\lambda^-]$		
	c. [A ⁺], [A ⁻]		

d. [E ⁺], [E ⁻]	

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Programme Nam	e:	M. Tech. CFD
Course Name	:	Computational Gas Dynamics
Course Code	:	ASEG 7020
Nos. of page(s)	:	03
Instructions:		Assume any missing data appropriately.

Semester : I Time : 03 hrs. Max. Marks: 100

CO1

10

Discuss the condition on wave speeds for the occurrence of an expansion wave in a one-dimensional space.	Marks 4	CO
		CO1
Find the conservative numerical flux $f_{i+1/2}^n$ of the Roe's first order upwind method.	4	CO3
Using the exact Riemann solver, write expressions for the fluxes at the cell interface $Au(x=0)$ in terms of left and right states for various wave speeds.	4	CO2
Project a first order upwind method for the linear advection equation using wave speed splitting.	4	CO3
The unsteady Euler Equations have a full wave description. Justify	4	CO1
SECTION B		
For a Roe's approximate Riemann problem for the Euler problem is given as $\frac{\partial u}{\partial t} + A_{RL} \frac{\partial u}{\partial x} = 0$	10	CO3
	Using the exact Riemann solver, write expressions for the fluxes at the cell interface $Au(x=0)$ in terms of left and right states for various wave speeds. Project a first order upwind method for the linear advection equation using wave speed splitting. The unsteady Euler Equations have a full wave description. Justify SECTION B For a Roe's approximate Riemann problem for the Euler problem is given as $\frac{\partial u}{\partial t} + A_{RL} \frac{\partial u}{\partial x} = 0$	Using the exact Riemann solver, write expressions for the fluxes at the cell interface4 $Au(x=0)$ in terms of left and right states for various wave speeds.4Project a first order upwind method for the linear advection equation using wave4speed splitting.4The unsteady Euler Equations have a full wave description. Justify4SECTION BFor a Roe's approximate Riemann problem for the Euler problem is given as10

where

	$u(x,0) = \begin{cases} u_L x < 0 \\ u_R x > 0 \end{cases}$
	$\left(u_{R}^{X} > 0\right)$
	Calculate the Roe-average velocity at the cell interface in terms of the velocities and
	densities on the left and right of the cell interface.
Q 7	Show that, for an isothermal flow, the one dimensional unsteady Euler equations can
	be written as
	$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (\rho u) = 0$

	$\frac{\partial}{\partial t}(\rho u) + \frac{\partial}{\partial x}(\rho (u^2 + a^2)) = 0$		
	OR		
	Consider the one dimensional Euler Equations		
	$\frac{\partial \mathbf{u}}{\partial t} + A \frac{\partial \mathbf{u}}{\partial x} = 0$		
	Show that the Jacobian Matrix A is diagonalizable, i.e. $Q_A^{-1}AQ_A = \Lambda$.		
Q 8	Prove that Van Leer's flux vector splitting satisfies $df^+/du \ge 0$ and $df^-/du \le 0$.	10	CO4
Q 9	For a steady state adiabatic flow, assuming <i>s</i> = <i>const</i> ., and $u+2a/(\gamma-1)=const$., derive	10	
	an expression for the velocity u , speed of sound a and pressure p in the expansion fan		
	centered on $(x, t)=(0,0)$, which connects two steady uniform flows u_L and u_R , as a		CO2
	function of space and time.		
	SECTION-C		
Q 10	Find the solution to Roe's approximate Riemann problem at $t=0.01$ s if $p_L=100,000$	20	CO3
	N/m ² , ρ_L =1 kg/m ³ , u_L =100 m/s and p_R =10,000 N/m ² , ρ_R = 0.125 kg/m ³ , u_R =-50 m/s.		
Q 11	The 1-D unsteady Euler equations are given by	20	CO4
	$U_t + [A]U_x = 0$		
	where		
	$U = [\rho, u, p]^T$		
	and		
	$[A] = \begin{bmatrix} u & \rho & 0 \\ 0 & u & \frac{1}{\rho} \\ 0 & \rho a^2 & u \end{bmatrix}$		
	Find the eigenvalues and the left eigenvectors for this system of equations.		
	OR		

Apply Roe's scheme to the following system of equations,	
$U_t + [A]U_x = 0$	
where	
$U = [\rho, u, p]^T$	
and	
$[A] = \begin{bmatrix} u & \rho & 0 \\ 0 & u & \frac{1}{\rho} \\ 0 & \rho a^2 & u \end{bmatrix}$	
and thus evaluate the Roe-averaged Jacobian matrix $[A] = [T][\Lambda][T]^{-1}$, if $0 \le u \le a$.	