Name: Enrolment No:			
Progra Cours Cours Nos. of Instru 3) Assu	UNIVERSITY OF PETR End Semester E me Name: B.Tech. CHE R\&P, APE Name $: \quad$ Basic Electronics Engg. Code $: \quad$ ECEG 1002 page(s) $\quad 2$ ions: 1) Mention Roll No at the appropriate	ES r : : 03 arks : 1 brief and	ncise.
SECTION A (20 marks) All question of section A are compulsory			
S. No.		Marks	CO
Q 1	Enumerate the characteristics of a Zene a crystal diode?	4	CO1
Q 2	Explain the physical structure of NPN carriers for the terminals.	4	CO1
Q 3	Explain the significance of digital logic. computers?	4	CO1
Q 4	Explain the hexadecimal number system.	4	CO1
Q 5	What is meant by the term universal g gates? Explain with the help of an exam	4	CO1
SECTION B (40 marks)			
Q 6	An a.c. voltage of peak value 20 V is load resistance of 500Ω. If the forward current through diode, and (ii) Peak out diode is assumed to be an ideal diode. Fig 1. Q5	10	CO2
Q 7	Design a circuit for emitter bias based for $I_{C}, V_{C E}$.	10	CO2
Q 8	Convert the following numbers into cor A. $(60)_{10}=(?)_{16}$	10	CO2

	B. $(001010110010100)_{2}=(?)_{16}$ C. $(171)_{8}=(?)_{2}$ D. $(1 A 4)_{16}=(?)_{2}$		
Q 9	Simplify the following Boolean expressions: A. $Y=(A+B+C) \cdot(A+B)$ B. $Y=A B+A B C+A B C$	10	CO2
SECTION-C (25 marks)			
Q 10	A. Derive the expression for current amplification factor (α) and base current amplification factor (β). In a transistor configuration, $I_{B}=68 \mu A, I_{E}=30 \mathrm{~mA}$, and $\beta=440$. Determine the α rating the transistor. Also calculate the collector current. B. Develop the simplified Boolean expression for the following digital circuit:	10+10	CO 3
Q 11	A. For the following amplifier determine the operating point. B. Develop a full adder using two half adders. Support your circuit with the help of a truth table.	10+10	CO 3

Name: Enrolment No:			
SECTION A (20 marks) All question of section A are compulsory			
S. No.		Marks	CO
Q 1	Enumerate the characteristics of a crystal diode. Does a crystal diode obeys ohm's law?	4	CO1
Q 2	Explain the physical structure of PNP transistor. Also label various majority charge carriers for the terminals.	4	CO1
Q 3	Explain the significance of amplification. Which electronic devices are commonly used as amplifiers?	4	CO1
Q 4	Explain the binary number system. Enumerate with the help of an example.	4	CO1
Q 5	Why NAND gate is considered as a universal gate? Explain with the help of an example.	4	CO1
SECTION B (40 marks)			
Q 6	Determine the current I in the circuit shown in figure 1. Assume the diodes to be of silicon and forward resistance of the diodes to be zero. Fig1. Q5 - Diode circuit	10	CO2
Q 7	Design a circuit for voltage divider based transistor configuration. Derive the expression for $I_{C}, V_{C E}$.	10	CO2
Q 8	Simplify the following Boolean expressions: A. $Y=1+A(B \cdot \dot{C}+B C+\dot{B} \cdot \dot{C})+A \dot{B} C+A C$ B. $Y=(A+\dot{B}+C)+(B+\dot{C})$	10	CO2
Q 9	Convert the following numbers into corresponding number system (3 marks each) A. $(40)_{10}=(?)_{16}$	10	CO2

	B. $(000111101100)_{2}=(?)_{16}$ C. $(152)_{8}=(?)_{2}$ D. $(C 4)_{16}=(?)_{2}$		
SECTION-C (40 marks)			
Q 10	A. For a transistor derive the expression for α and β. In a transistor configuration, $I_{B}=18 \mu A, I_{E}=25 \mathrm{~mA}$, and $\alpha=0.096$. Determine the β rating the transistor. Also calculate the collector current. B. Develop the simplified Boolean expression for the following digital circuit:	10+10	CO 3
Q 11	A. Design an emitter bias amplifier such to satisfy the following requirements: $+V_{C C}=15 \mathrm{~V},-V_{E E}=15 \mathrm{~V}, R_{B}=100 \mathrm{~K} \Omega, R_{E}=10 \mathrm{~K} \Omega, R_{C}=4.7 \mathrm{~K} \Omega, \beta=110$ Also calculate the operating point for the amplifier. B. Develop a full adder using two half adders. Support your circuit with the help of a truth table.	10+10	CO3

