Name:					
Enrolment No:					
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES				
C	End Semester Examination, December 2018	т			
	Coursee: Basic Electronics Engineering (PHYS-1003) Semester: I Programme: B.Tech (CIT: IOT, Big Data, DevOps, CSF, Cyber Law/IPR, OGI, OSS, Ai&ML)				
0	03 hrs. Marks: 1	100			
	ctions:				
	Draw suitable circuit diagrams wherever required to justify your answer. Your answer should be concise and to the point.				
2.	SECTION A				
	(All questions are compulsory.)				
1.	Describe the difference between donor and acceptor impurities.	[4]	CO1		
2.	Discuss with the help of a circuit diagram, how a zener diode can be used as a voltage regulator.	[4]	CO1		
3.	A center-tapped full wave rectifier has the load resistance R_L = 2000 ohm. The forward resistance R_F of each diode is 20 ohm. The voltage across half of the secondary winding is given by the equation V = 400sin14t. Calculate the Maximum current, Direct current and ripple factor.	[4]	CO1		
4.	Determine the current gain, α_{dc} if emitter current, $I_E = 2.8$ mA and base current, $I_B = 20$ μ A.	[4]	CO2		
5.	An amplifier operating over the frequency range from 10 to 18 MHz has a 8 k Ω input resistor. What is the rms noise voltage at the input to this amplifier if the ambient temperature is 27°C? (Boltzmann constant, k = 1.38 x 10 ⁻²³ J/K)	[4]	CO4		
	SECTION B				
	(All questions are compulsory. Question no. 7 has internal choice.)				
6.	(a) Using diode equation, determine the diode current at 20°C for a silicon diode with I_s = 50 nA and an applied forward bias of 0.6 V.				
	(b) Calculate the value of thermal voltage at room temperature. (Boltzmann constant, $k = 1.38 \times 10^{-23} \text{ J/K}$)	[5+5]	CO1		
7.	Discuss the construction and working of common base transistor amplifier, write the expression for current gain and emitter current. Also draw the input and output characteristics.				
	OR	[10]	CO2		
	Explain the construction and working of depletion mode of depletion type MOSFET with the help of a suitable diagram.				
8.	How the Amplifiers can be classified based on the operating point? Which types of	[8+2]	CO3		

	operational amplifier have maximum efficiency and maximum conduction angle?		
9.	Discuss the frequency Modulation superhetrodyne receiver by explaining the function of each stage with the help of a suitable block diagram.	[10]	CO4
	SECTION C		
	(Q10 and Q11 are compulsory. Attempt any set of Q12, 13 & 14.)		
10.	What do you understand by the term noise? Give a detailed discussion on the different types of noises that occurs in communication system.	[3+7]	CO4
11.	Draw the circuit diagram of integrator and differentiator and derive the expression for the output voltage of an integrator.	[5+5]	CO3
12.	Determine Vo for the circuit shown below:	[10]	CO1
13.	V_{i} $+ 2.2 k\Omega$ $+ 4V$ $+ 5V$	[5]	CO3
	$V_o = -(3V_1 + 4V_2 + 5V_3)$ where V ₁ , V ₂ and V ₃ are the inputs and R _f = 20kΩ		
14.	Find the output voltage for the given circuit $2mV \bullet 1k\Omega \\ 2mV \bullet 2k\Omega \\ 5mV \bullet V_{out}$	[5]	CO3
12.	OR (i) A Zener regulated circuit is shown in the figure. Find the range of load resistance to	[10]	CO1
	maintain a constant V_L . Assume Zener is an ideal one of rating 10V and the maximum zener current is 20 mA. Also find the maximum power consumed by Zener.		

Name: Enrolment No:					
Enrolment No:					
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018 Coursee: Basic Electronics Engineering (PHYS-1003) Semester: I Programme: B.Tech (CIT: IOT, Big Data, DevOps, CSF, Cyber Law/IPR, OGI, OSS, Al&ML) Time: 03 hrs. Max. Marks: 100 Instructions: 3. Draw suitable circuit diagrams wherever required to justify your answer. 4. Your answer should be concise and to the point.					
	SECTION A				
1.	(All questions are compulsory.) What do you understand by the terms 'drift' and 'diffusion' for a semiconductor? Write the expression for total current density.	[4]	CO1		
2.	Write the steps in determining the output waveform from an unbiased clamper.	[4]	CO1		
3.	For the series diode configuration of given circuit determine V_D , V_R , and I_D .	[4]	CO1		
4.	If Current gain β_{dc} =180 and collector current I_C =2.0 mA, find Emitter current and base current.	[4]	CO2		
5.	Calculate the noise voltage at the input of a television RF Amplifier using a device that has a 200 ohm equivalent noise resistance and 100 Ohm input resistor. The bandwidth of the amplifier is 4 MHz and the temperature is 15 °C. (Boltzmann constant, $k = 1.38 \times 10^{-23} \text{ J/K}$)	[4]	CO4		
SECTION B (All questions are compulsory. Question no. 7 has internal choice.)					
6.	 (a) Discuss the effect of biasing on the width of depletion layer of PN junction diode. (b) A sample of intrinsic silicon has 0.13 and 0.05 m²/V-s electron and hole mobilities respectively at 300K. If the density of electrons and holes are each equal to 1.5 x 10¹⁶ m⁻³ at 300K, find the electrical conductivity for addition of 1 donor impurity atom in 10⁹ silicon atoms. Draw the output characteristics of a common emitter transistor configuration. Describe 	[5 + 5]	CO1		
/.	a load line and discuss the significance of an operating point. OR	[10]			

	Explain the construction and working of enhancement mode of depletion type MOSFET with the help of a suitable diagram.		
8.	Write the characteristics of an ideal operational Amplifier. Draw the circuit diagram of op-amp as summer and find out the expression for the output voltage.	[10]	CO3
9.	Explain the importance of modulation and demodulation in communication system with their definitions and discuss different types of modulation along with diagram.	[10]	CO4
	SECTION C (Q10 and Q11 are compulsory. Attempt any set of Q12 & 13	.)	
10.	Discuss the Amplitude Modulation superhetrodyne receiver by explaining the function of each stage with the help of a suitable block diagram.	[10]	CO4
11.	Explain the advantage of negative feedback over positive feedback and derive the relation for overall voltage gain of amplifier with negative feedback.	[10]	CO3
12.	Sketch the output waveform from the following clamper network for the given input signal: $ \begin{array}{c} $	[10]	CO1
13.	Find the output voltage for an input voltage of 80 μ V for the given circuit The resistor values are $R_f = 470 k\Omega$, $R_1 = 4.3 K\Omega$, $R_2 = 33 K\Omega$ and $R_3 = 33 K\Omega$ $R_f = 470 k\Omega$	[10]	CO3
12.	Determine the range of Vi that will maintain V_L at 8 V and not exceed the maximum power rating of Zener diode.	[10]	CO1

