Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018 Coursee: Basic Electronics Engineering (PHYS-1003) Semester: I Programme: B.Tech (CIT: IOT, Big Data, DevOps, CSF, Cyber Law/IPR, OGI, OSS, Ai\&ML) Time: 03 hrs. Max. Marks: 100 Instructions: 1. Draw suitable circuit diagrams wherever required to justify your answer. 2. Your answer should be concise and to the point.			
SECTION A(All questions are compulsory.)			
1.	Describe the difference between donor and acceptor impurities.	[4]	CO1
2.	Discuss with the help of a circuit diagram, how a zener diode can be used as a voltage regulator.	[4]	CO1
3.	A center-tapped full wave rectifier has the load resistance $R_{L}=2000 \mathrm{ohm}$. The forward resistance R_{F} of each diode is 20 ohm . The voltage across half of the secondary winding is given by the equation $\mathrm{V}=400 \sin 14 t$. Calculate the Maximum current, Direct current and ripple factor.	[4]	CO1
4.	Determine the current gain, α_{dc} if emitter current, $I_{E}=2.8 \mathrm{~mA}$ and base current, $I_{B}=20$ $\mu \mathrm{A}$.	[4]	CO2
5.	An amplifier operating over the frequency range from 10 to 18 MHz has a $8 \mathrm{k} \Omega$ input resistor. What is the rms noise voltage at the input to this amplifier if the ambient temperature is $27^{\circ} \mathrm{C}$? (Boltzmann constant, $\mathrm{k}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$)	[4]	CO4
SECTION B (All questions are compulsory. Question no. 7 has internal choice.)			
6.	(a) Using diode equation, determine the diode current at $20^{\circ} \mathrm{C}$ for a silicon diode with $\mathrm{I}_{\mathrm{s}}=$ 50 nA and an applied forward bias of 0.6 V . (b) Calculate the value of thermal voltage at room temperature. (Boltzmann constant, $\mathrm{k}=$ $1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$)	[$5+5]$	CO1
7.	Discuss the construction and working of common base transistor amplifier, write the expression for current gain and emitter current. Also draw the input and output characteristics. OR Explain the construction and working of depletion mode of depletion type MOSFET with the help of a suitable diagram.	[10]	CO 2
8.	How the Amplifiers can be classified based on the operating point? Which types of	[8+2]	CO3

13.

Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018 Coursee: Basic Electronics Engineering (PHYS-1003) Programme: B.Tech (CIT: IOT, Big Data, DevOps, CSF, Cyber Law/IPR, OGI, OSS, AI\&ML) Time: 03 hrs. Instructions: 3. Draw suitable circuit diagrams wherever required to justify your answer. 4. Your answer should be concise and to the point. 100			
SECTION A (All questions are compulsory.)			
1.	What do you understand by the terms 'drift' and 'diffusion' for a semiconductor? Write the expression for total current density.	[4]	CO1
2.	Write the steps in determining the output waveform from an unbiased clamper.	[4]	CO1
3.	For the series diode configuration of given circuit determine V_{D}, V_{R}, and I_{D}.	[4]	CO1
4.	If Current gain $\beta_{\mathrm{dc}}=180$ and collector current $I_{C}=2.0 \mathrm{~mA}$, find Emitter current and base current.	[4]	CO 2
5.	Calculate the noise voltage at the input of a television RF Amplifier using a device that has a 200 ohm equivalent noise resistance and 100 Ohm input resistor. The bandwidth of the amplifier is 4 MHz and the temperature is $15^{\circ} \mathrm{C}$. (Boltzmann constant, $\mathrm{k}=1.38$ $\mathrm{x} 10^{-23} \mathrm{~J} / \mathrm{K}$)	[4]	CO 4
SECTION B (All questions are compulsory. Question no. 7 has internal choice.)			
6.	(a) Discuss the effect of biasing on the width of depletion layer of PN junction diode. (b) A sample of intrinsic silicon has 0.13 and $0.05 \mathrm{~m}^{2} / \mathrm{V}-\mathrm{s}$ electron and hole mobilities respectively at 300 K . If the density of electrons and holes are each equal to 1.5×10^{16} m^{-3} at 300 K , find the electrical conductivity for addition of 1 donor impurity atom in 10^{9} silicon atoms.	$[5+5]$	CO1
7.	Draw the output characteristics of a common emitter transistor configuration. Describe a load line and discuss the significance of an operating point. OR	[10]	CO 2

	Explain the construction and working of enhancement mode of depletion type MOSFET with the help of a suitable diagram.		
8.	Write the characteristics of an ideal operational Amplifier. Draw the circuit diagram of op-amp as summer and find out the expression for the output voltage.	[10]	CO3
9.	Explain the importance of modulation and demodulation in communication system with their definitions and discuss different types of modulation along with diagram.	[10]	CO 4
SECTION C(Q10 and Q11 are compulsory. Attempt any set of Q12 \& 13.)			
10.	Discuss the Amplitude Modulation superhetrodyne receiver by explaining the function of each stage with the help of a suitable block diagram.	[10]	CO4
11.	Explain the advantage of negative feedback over positive feedback and derive the relation for overall voltage gain of amplifier with negative feedback.	[10]	CO3
12.	Sketch the output waveform from the following clamper network for the given input signal:	[10]	CO1
13.	Find the output voltage for an input voltage of $80 \mu \mathrm{~V}$ for the given circuit The resistor values are $\mathrm{R}_{\mathrm{f}}=470 \mathrm{k} \Omega, \mathrm{R}_{1}=4.3 \mathrm{~K} \Omega, \mathrm{R}_{2}=33 \mathrm{~K} \Omega$ and $\mathrm{R}_{3}=33 \mathrm{~K} \Omega$	[10]	$\mathrm{CO} 3$
12.	Determine the range of Vi that will maintain V_{L} at 8 V and not exceed the maximum power rating of Zener diode.	[10]	CO1

