Name:

Enrolment No:

Semester: I

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Course: Advanced Thermodynamics CHPD 7003

Programme: M.Tech(ChE+PD)

Time: 03 hrs. Max. Marks: 100

Instructions: Ask for relevant tables					
	SECTION A $5 \times 4 = 20$				
S. No.		Marks	CO		
Q 1	A closed system undergoes cyclic process comprised of following three steps. Step-1: The system having internal energy of 210 kJ to which 150 kJ of heat energy is added at constant volume. Step-2: The system rejects 85 kJ of heat and work done on the system is 20kJ at constantpressure. Step-3: The system is brought back to original state by an adiabatic process. Calculate the work done during the adiabatic process in Step-3.	4	CO1		
Q 2	Calculate the change in entropy of 100 kg of liquid benzene when it is heated from 25 to 50 °C isobarically. Specific heat of liquid benzene in this temperature range is 0.5 J/g °C.	4	CO2		
Q 3	Partial molar residual Gibbs free energy of oxygen in air at 300 K and 1 bar is 0.5 J/mol. Calculate the fugacity of oxygen in air. Mole fraction of oxygen in air is 0.21.	4	CO3		
Q 4	What is meant by pseudo component and illustrate the same with suitable examples.	4	CO4		
Q 5	State the phase rule for reacting system and apply the same to the system of partial decomposition of CaCO ₃ into an evacuated space.	4	CO5		
	SECTION B $5 \times 8 = 40$				
Q 6	Calculate the molar volume of propane gas at 300 °C and 50 bar while it obeys the Peng-Robinson equation. (Or) Calculate the molar volume of methane gas at 200 °C and 25 bar using Pitzer correlations for the second Virial Coefficient.	8	CO1		
Q 7	Calculate the residual enthalpy of liquid cyclohexane at 45 °C and 2 bars when it obeys Van der Waals equation.	8	CO2		
Q 8	Calculate the fugacity of n-butane vapor at 500 K and 20 bar using the tables of φ ⁰ and φ ¹ . (Or) Calculate the fugacity and residual Gibbs free energy of nitic oxide gas at 300 °C and 30 bar using generalized correlation for the second virial coefficient.	8	CO3		
Q 9	Discuss the correlation between true boiling point and equilibrium flash vaporization curves.	8	CO4		

Q 10	Calculate the equilibrium constant of the following reaction at 350 °C. $N_2(g) + 3H_2(g) \leftrightarrow 2NH_3(g)$	8	CO5
	SECTION-C $2 \times 20 = 40$		
Q 11	(i) Derive the expression for change in entropy of mixing of ideal g ideal gas mixture.	gases into 5	CO3
	(ii) Calculate the G^R of the binary vapor mixture of acetone and 1,3-at 60 °C and 170 kPa. The mole fraction of acetone in the mixture Set all $k_{ij} = 0$		CO3
	(Or) (i) Derive the relation between partial excess Gibbs free energy of a to its activity coefficient in solution.	a species 6	CO3
	(ii) Calculate the fugacity of liquid benzene at 150 bar and at its nor boiling point which is 80.1 °C.	rmal 14	CO3
Q12	(i) Derive the relation between equilibrium constant and Gibbs fr change.	ree energy 5	CO5
	(ii) Propane is dehydrogenated to propylene and hydrogen at Calculate the conversion at equilibrium, assuming that all of the ideally.		CO5