Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018

Course: Rock Mechanics and Geotechnical Engineering (GNEG-391)

Semester: V

Programme: B-Tech GIE and GSE V Time: 03 hrs.

Max. Marks: 100

Instructions: All the question are compulsory wherever necessary draw neat sketch Number of Pages :03

SECTION A

S. No.		Marks	CO
Q 1	Write a short note on the following terms.a) Colluvium soil b) Hardpan c) Thermal Admittance d) Q-system e) SRF	10	CO1
Q.2	Differentiate between the following terms.i)Cohesive soil and Non-cohesive soilii)Effective porosity and Total porosityiii)Clogging and Dilationiv)Effective stress and Shear stressv)Volumetric strain and Shear strain	10	CO2
	SECTION B		
Q .3	Define Liquefaction? Explain in brief causes, effect and prevention of liquefaction during geotechnical engineering.	10	CO3
Q.4	Explain in brief different types of Blasting and control techniques used during Geotechnical engineering. Explain their significance.	7+3	CO4
Q.5	 a)Describe in brief specific requirements of excavation b) Write a short note on excavation methods and excavation hazards during geotechnical Engineering. 	3+7	CO4
Q.6	 a) Explain and justify different type of rock material properties during rock mass and rock structure rating. OR 	10	CO4
	i)In a borehole length of 200 cm the recovery core lengths (cm) are 43, 8, 6, 20, 17, 38, 10, 11, 9, 3, 20 and 15. Find the rock quality designation.		CO5
	 A 15 m span crusher chamber for an underground mine is to be excavated at a depth of 2,100 m below surface. RQD values range from 85% to 95%. Joint set number is 4 while joint roughness number is 3 and joint alteration number is 1 also joint water reduction factor is 1. SRF should 		

	lie between 10 and 20. Find Rock tunneling quality.		
	SECTION-C		
Q .7	1. It has been determined that a point in a load-carrying chamber is subjected to the following stress condition: $\sigma_x = 400 \text{ MPa}$ $\sigma_y = -300 \text{ MPa}$ $\tau_{xy} = 200 \text{ MPa}$ (CW)		
	Calculate the following: (i) maximum and minimum principal stress and maximum shear stress (ii) angle of orientation of stresses (iii) Draw the initial stress element and the complete Mohr's circle, labeling critical points.	14+6	C05
	2.A sample of clay taken from a natural stratum was found to be partially saturated and when tested in the laboratory gave the following results. Compute the degree of saturation. Specific gravity of soil particles = 2.6; wet weight of sample = 2.50 N; dry weight of sample = 2.10 N; and volume of sample = 150 cm ³ .		
Q.8	a) 4.0m y = 17.0 kN/m2	8+5+7	CO5 CO6
	8.0m A 1.5 γ = 18.5 kN/m2 Sandy silt stone C'=15 kpa, Φ '=28°, K= 0.35		
	The series of shear strength test performed on above said lithology and calculated values are show in the figure. Determine the shear strength on horizontal and vertical planes at point A for above given values.		
	b) In the quarry cylindrical limestone slab was cut and measured length is 3m and 0.4m diameter. It Carries a Load of 60 MN. Given that, the modulus of elasticity is 100 GPA. Calculate the compressive stress and strain and also determine how much the limestone slab is compressed.		
	c)From the below figure find the effective stress in the soil at a depth of 4m below the footing and the increase in the stress due to a drop of the WT (wall thickness) from originally 1m below the footing to 5m below the footing. $I_{4=}0.086$		

		OR					
tak tak co	ken for und oulated be	confined compressional compression compre	essive stre ress strain	ength n gra	nd height of 150 m test. The test resu aph and determin d Poisson's ratio	ilts are ne the	(10+10
	Load(kN	Axial Displacen	nent(mm)	Later	ral displacement(mm)		
	227.1	0.26			0.014		
	293.5	0.3			0.053		
	376.7	0.34			0.014		
	391.4	0.35			0.029		
	4155						
	415.5	0.38			0.048		
d.	414 Calculate th	0.42 he vertical stress fo			0.054 • 10m under the center	of Raft	
Table: calcula	414 Calculate th 10m X 10m 1 Influence hation:	0.42 he vertical stress for for foundation wi Factors (I _p) for Fou	th uniform I	Load gineer	0.054 = 10m under the center Q = 50 ton/m ² . ing used in vertical str		
Table: calcula	414 Calculate th 10m X 10m 1 Influence hation:	0.42 he vertical stress for for foundation wi Factors (I _p) for Fou Corner	th uniform indation Englishing Centre	Load gineer	0.054 = 10m under the center Q = 50 ton/m ² . ing used in vertical str intermediate		
Table: calcula	414 Calculate th 10m X 10m 1 Influence hation:	0.42 he vertical stress for for foundation wi Factors (I _p) for Fou	th uniform 1 andation Eng Centre 0.0	Load gineer	0.054 = 10m under the center Q = 50 ton/m ² . ing used in vertical str		
Table: calcula R/Z 0.1	414 Calculate th 10m X 10m 1 Influence hation:	0.42 he vertical stress for for foundation wi Factors (I _p) for Fou Corner 0.067	th uniform 1 undation Eng Centre 0.0 0.1	Load gineer I 064	0.054 = 10m under the center Q = 50 ton/m ² . ing used in vertical str <u>intermediate</u> 0.100		
Table: calcula R/Z 0.1 0.2	414 Calculate th 10m X 10m 1 Influence hation:	$\begin{array}{c} 0.42\\ \hline 0.42\\ \hline 0.02\\ \hline$	th uniform 1 undation Eng Centre 0.0 0.1 0.1	Load gineer 1 064 128	0.054 = 10m under the center Q = 50 ton/m ² . ing used in vertical str <u>intermediate</u> 0.100 0.200		
Table: calcula R/Z 0.1 0.2 0.3 0.4 0.5	414 Calculate th 10m X 10m 1 Influence hation:	0.42 he vertical stress for for foundation wi Factors (I _p) for Fou Corner 0.067 0.133 0.200 0.267 0.333	th uniform 1 undation Eng Centre 0.0 0.1 0.1 0.2 0.2 0	Load gineer 1064 128 192 256 32	0.054 = 10m under the center Q = 50 ton/m ² . ing used in vertical str <u>intermediate</u> 0.100 0.200 0.300 0.400 0.500		
R/Z 0.1 0.2 0.3 0.4 0.5 0.6	414 Calculate th 10m X 10m 1 Influence hation:	0.42 he vertical stress for for foundation wi Factors (I _p) for Fou Corner 0.067 0.133 0.200 0.267 0.333 0.400	th uniform 1 undation Eng Centre 0.0 0.1 0.1 0.2 0 0 0.3	Load gineer 1064 128 192 256 .32 384	0.054 = 10m under the center Q = 50 ton/m ² . ing used in vertical str intermediate 0.100 0.200 0.300 0.400 0.500 0.600		
R/Z 0.1 0.2 0.3 0.4 0.5 0.6 0.7	414 Calculate th 10m X 10m 1 Influence hation:	$\begin{array}{c} 0.42 \\ \hline 0.40 \\ \hline 0.467 \\ \hline 0.42 \\ \hline 0.467 \\ \hline 0.42 \\ \hline 0.4$	th uniform 1 undation Eng Centre 0.0 0.1 0.1 0.2 0 0 0.2 0.2 0.2	Load gineer 1064 128 192 256 .32 384 448	0.054 = 10m under the center Q = 50 ton/m ² . ing used in vertical str intermediate 0.100 0.200 0.300 0.400 0.500 0.600 0.700		
R/Z 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8	414 Calculate th 10m X 10m 1 Influence hation:	0.42 he vertical stress for for foundation wi Factors (I _p) for Fou Corner 0.067 0.133 0.200 0.267 0.333 0.400 0.467 0.533	th uniform 1 undation Eng Centre 0.0 0.1 0.1 0.2 0 0.2 0.4 0.4 0.5	Load gineer 1064 128 192 256 .32 384 448 512	0.054 = 10m under the center Q = 50 ton/m ² . ing used in vertical str ntermediate 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800		
Table: calcula R/Z 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	414 Calculate th 10m X 10m 1 Influence hation:	0.42 he vertical stress for for foundation wi Factors (I _p) for Fou Corner 0.067 0.133 0.200 0.267 0.333 0.400 0.467 0.533 0.600	th uniform 1 Indation Eng Centre 0.0 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Load gineer 1064 128 192 256 .32 384 448 512 576	0.054 = 10m under the center Q = 50 ton/m ² . ing used in vertical str <u>ntermediate</u> 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900		
Table: calcula R/Z 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0	414 Calculate th 10m X 10m 1 Influence hation:	0.42 he vertical stress for for foundation wi Factors (I _p) for Fou Corner 0.067 0.133 0.200 0.267 0.333 0.400 0.467 0.533 0.600 0.667	th uniform 1 undation Eng Centre 0.0 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Load gineer 1064 128 192 256 .32 384 448 512 576 .64	0.054 = 10m under the center Q = 50 ton/m ² . ing used in vertical str ntermediate 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900 1.000		
R/Z 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	414 Calculate th 10m X 10m 1 Influence hation:	0.42 he vertical stress for for foundation wi Factors (I _p) for Fou Corner 0.067 0.133 0.200 0.267 0.333 0.400 0.467 0.533 0.600	th uniform 1 indation Eng Centre 0.0 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	Load gineer 1064 128 192 256 .32 384 448 512 576	0.054 = 10m under the center Q = 50 ton/m ² . ing used in vertical str <u>ntermediate</u> 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900		

2.0	1.76	1.07	1.073	
				-