Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Programme Name: B.Tech MechanicalCourse Name: Solar Thermal TechnologiesCourse Code: MHEG 451Nos. of page(s): 4

Semester : VII Time : 03 hrs Max. Marks : 100

Instructions: Assume the suitable data if required SECTION A

S. No.		Marks	CO
Q 1	Differentiate between the Flat plate solar collectors and concentrating solar collectors.	4	CO2
Q 2	Explain thermo-syphon system for water heating.	4	CO3
Q 3	Describe the solar thermal air heating system for domestic house.	4	CO1
Q 4	Why the orientation is needed in concentrating type collectors?	4	CO1
Q 5	A compound parabolic collector, 1 m long, has an acceptance angle of 20° . The absorber surface of the collector is flat and has a width of 10 cm. Calculate the concentration ratio, the aperture, the height and the surface area of the concentrator.	4	CO4
	SECTION B	I I	
Q 6	Describe the solar thermal power plant with a neat diagram.	10	CO1
Q 7	Explain the working of solar refrigeration cycle with a neat diagram.	10	C05
Q 8	Explain the working principle of compound parabolic collector with a neat sketch.	10	CO2
Q 9	Classify the concentrated solar collectors and mention its applications		
	(OR) Explain the working of solar cookers.	10	CO2 CO3

	SECTION	-C		
Q 10	Explain the working of parabolic trough collector			
	Discuss the limitations of its concentration ratio and	nd derive an equation for useful	20	CO3
	heat gain.			
Q 11	Calculate the overall heat loss coefficient U_1 for parabolic concentrating collector system. The record coated absorber tube with one glass cover around it.	eiver consists of a selectively –		
	Absorber tube inner diameter	: 7.5 cm		
	Absorber tube outer diameter	: 8.1 cm		
	Glass cover inner diameter	: 14.4 cm		
	Glass cover outer diameter	: 15.0 cm		
	Emissivity of absorber tube surface	: 0.15		
	Emissivity of glass	: 0.88		
	Mean temperature of absorber tube	: 170°C		
	Ambient temperature	: 25°C		
	Wind speed	: 4 m/s		
	(OR) A CPC is mounted on a horizontal E - W axis and sloping at an angle of 40°. The concentration ratio of its absorber tube plate is 6 cm and its length is 2 m.	f the collector is 6.5, the width of		CO
	A CPC is mounted on a horizontal E - W axis and sloping at an angle of 40° . The concentration ratio of its absorber tube plate is 6 cm and its length is 2 m. a fluid (Cp = 2.35 kJ/kg-K) which enters at a tem exit temperature of the fluid and the instantaneous statement of the fluid and the instantaneous statement.	f the collector is 6.5, the width of The collector is used for heating perature of 130°C. Calculate the	20	CO
	A CPC is mounted on a horizontal E - W axis and sloping at an angle of 40° . The concentration ratio of its absorber tube plate is 6 cm and its length is 2 m. a fluid (Cp = 2.35 kJ/kg-K) which enters at a tem exit temperature of the fluid and the instantaneo following situation.	f the collector is 6.5, the width of The collector is used for heating perature of 130°C. Calculate the us collection efficiency for the	20	CO2 CO3 CO4
	A CPC is mounted on a horizontal E - W axis and sloping at an angle of 40° . The concentration ratio of its absorber tube plate is 6 cm and its length is 2 m. a fluid (Cp = 2.35 kJ/kg-K) which enters at a tem exit temperature of the fluid and the instantaneo following situation. Location of the collector	f the collector is 6.5, the width of The collector is used for heating perature of 130°C. Calculate the us collection efficiency for the : New Delhi (28.58°N)	20	CO
	A CPC is mounted on a horizontal E - W axis and sloping at an angle of 40° . The concentration ratio of its absorber tube plate is 6 cm and its length is 2 m. a fluid (Cp = 2.35 kJ/kg-K) which enters at a tem exit temperature of the fluid and the instantaneo following situation. Location of the collector Date	f the collector is 6.5, the width of The collector is used for heating perature of 130°C. Calculate the us collection efficiency for the : New Delhi (28.58°N) : November 5	20	CO
	 A CPC is mounted on a horizontal E - W axis and sloping at an angle of 40°. The concentration ratio of its absorber tube plate is 6 cm and its length is 2 m. a fluid (Cp = 2.35 kJ/kg-K) which enters at a temperature of the fluid and the instantaneo following situation. Location of the collector Date Sun hour 	f the collector is 6.5, the width of The collector is used for heating perature of 130°C. Calculate the us collection efficiency for the : New Delhi (28.58°N) : November 5 : 15°	20	CO
	A CPC is mounted on a horizontal E - W axis and sloping at an angle of 40°. The concentration ratio of its absorber tube plate is 6 cm and its length is 2 m. a fluid (Cp = 2.35 kJ/kg-K) which enters at a tem exit temperature of the fluid and the instantaneo following situation. Location of the collector Date Sun hour Ig	f the collector is 6.5, the width of The collector is used for heating perature of 130°C. Calculate the us collection efficiency for the : New Delhi (28.58°N) : November 5 : 15° : 0.735 kW/m ²	20	CO
	A CPC is mounted on a horizontal E - W axis and sloping at an angle of 40°. The concentration ratio of its absorber tube plate is 6 cm and its length is 2 m. a fluid (Cp = 2.35 kJ/kg-K) which enters at a tem exit temperature of the fluid and the instantaneo following situation. Location of the collector Date Sun hour Ig Id	f the collector is 6.5, the width of The collector is used for heating perature of 130°C. Calculate the us collection efficiency for the : New Delhi (28.58°N) : November 5 : 15° : 0.735 kW/m ² : 0.162 kW/m ²	20	CO
	A CPC is mounted on a horizontal E - W axis and sloping at an angle of 40°. The concentration ratio of its absorber tube plate is 6 cm and its length is 2 m. a fluid (Cp = 2.35 kJ/kg-K) which enters at a tem exit temperature of the fluid and the instantaneo following situation. Location of the collector Date Sun hour Ig Id Number of tubes	f the collector is 6.5, the width of The collector is used for heating perature of 130°C. Calculate the us collection efficiency for the : New Delhi (28.58°N) : November 5 : 15° : 0.735 kW/m ² : 0.162 kW/m ² : 2	20	CO
	 A CPC is mounted on a horizontal E - W axis and sloping at an angle of 40°. The concentration ratio or its absorber tube plate is 6 cm and its length is 2 m. a fluid (Cp = 2.35 kJ/kg-K) which enters at a tem exit temperature of the fluid and the instantaneo following situation. Location of the collector Date Sun hour Ig Id Number of tubes Tube outer diameter 	f the collector is 6.5, the width of The collector is used for heating perature of 130°C. Calculate the us collection efficiency for the : New Delhi (28.58°N) : November 5 : 15° : 0.735 kW/m ² : 0.162 kW/m ² : 2 : 18 mm	20	CO
	A CPC is mounted on a horizontal E - W axis and sloping at an angle of 40°. The concentration ratio of its absorber tube plate is 6 cm and its length is 2 m. a fluid (Cp = 2.35 kJ/kg-K) which enters at a tem exit temperature of the fluid and the instantaneo following situation. Location of the collector Date Sun hour Ig Id Number of tubes Tube outer diameter Tube inner diameter	f the collector is 6.5, the width of The collector is used for heating perature of 130°C. Calculate the us collection efficiency for the : New Delhi (28.58°N) : November 5 : 15° : 0.735 kW/m ² : 0.162 kW/m ² : 2 : 18 mm : 14 mm	20	CO
	A CPC is mounted on a horizontal E - W axis and sloping at an angle of 40°. The concentration ratio of its absorber tube plate is 6 cm and its length is 2 m. a fluid (Cp = 2.35 kJ/kg-K) which enters at a tem exit temperature of the fluid and the instantaneo following situation. Location of the collector Date Sun hour Ig Id Number of tubes Tube outer diameter Tube inner diameter Transmissivity of glass cover	f the collector is 6.5, the width of The collector is used for heating perature of 130°C. Calculate the us collection efficiency for the : New Delhi (28.58°N) : November 5 : 15° : 0.735 kW/m ² : 0.162 kW/m ² : 2 : 18 mm : 14 mm : 0.89	20	CO
	A CPC is mounted on a horizontal E - W axis and sloping at an angle of 40°. The concentration ratio of its absorber tube plate is 6 cm and its length is 2 m. a fluid (Cp = 2.35 kJ/kg-K) which enters at a tem exit temperature of the fluid and the instantaneo following situation. Location of the collector Date Sun hour Ig Id Number of tubes Tube outer diameter Tube inner diameter Transmissivity of glass cover Reflectivity of concentrator	f the collector is 6.5, the width of The collector is used for heating perature of 130°C. Calculate the us collection efficiency for the : New Delhi (28.58°N) : November 5 : 15° : 0.735 kW/m ² : 0.162 kW/m ² : 2 : 18 mm : 14 mm : 0.89 : 0.87	20	CO
	A CPC is mounted on a horizontal E - W axis and sloping at an angle of 40°. The concentration ratio of its absorber tube plate is 6 cm and its length is 2 m. a fluid (Cp = 2.35 kJ/kg-K) which enters at a tem exit temperature of the fluid and the instantaneo following situation. Location of the collector Date Sun hour Ig Id Number of tubes Tube outer diameter Tube inner diameter Transmissivity of glass cover Reflectivity of concentrator Absorptivity of absorber surface	f the collector is 6.5, the width of The collector is used for heating perature of 130°C. Calculate the us collection efficiency for the : New Delhi (28.58°N) : November 5 : 15° : 0.735 kW/m ² : 0.162 kW/m ² : 2 : 18 mm : 14 mm : 0.89 : 0.87 : 0.94	20	CO
	A CPC is mounted on a horizontal E - W axis and sloping at an angle of 40°. The concentration ratio of its absorber tube plate is 6 cm and its length is 2 m. a fluid (Cp = 2.35 kJ/kg-K) which enters at a tem exit temperature of the fluid and the instantaneo following situation. Location of the collector Date Sun hour Ig Id Number of tubes Tube outer diameter Trube inner diameter Transmissivity of glass cover Reflectivity of concentrator Absorptivity of absorber surface Overall heat loss coefficient	f the collector is 6.5, the width of The collector is used for heating perature of 130°C. Calculate the us collection efficiency for the : New Delhi (28.58°N) : November 5 : 15° : 0.735 kW/m ² : 0.162 kW/m ² : 2 : 18 mm : 14 mm : 0.89 : 0.87 : 0.94 : 10.5 W/m ² -K	20	CO
	A CPC is mounted on a horizontal E - W axis and sloping at an angle of 40°. The concentration ratio of its absorber tube plate is 6 cm and its length is 2 m. a fluid (Cp = 2.35 kJ/kg-K) which enters at a tem exit temperature of the fluid and the instantaneo following situation. Location of the collector Date Sun hour Ig Id Number of tubes Tube outer diameter Tube inner diameter Transmissivity of glass cover Reflectivity of concentrator Absorptivity of absorber surface	f the collector is 6.5, the width of The collector is used for heating perature of 130°C. Calculate the us collection efficiency for the : New Delhi (28.58°N) : November 5 : 15° : 0.735 kW/m ² : 0.162 kW/m ² : 2 : 18 mm : 14 mm : 0.89 : 0.87 : 0.94	20	CO

٦

Γ

Equations for cylindrical parabolic concentrating collector.

1) Useful heat for unit length

$$\frac{q_l}{L} = h_{p-c}(T_{pm} - T_c)\pi D_o + \frac{\sigma \pi D_o(T_{pm}^4 - T_c^4)}{\left\{\frac{1}{\varepsilon_p} + \frac{D_o}{D_{ci}}\left(\frac{1}{\varepsilon_c} - 1\right)\right\}}$$

2) Useful heat for unit length

$$\frac{q_l}{L} = h_w(T_c - T_a)\pi D_{co} + \sigma \pi D_{co} \varepsilon_c (T_c^4 - T_{sky}^4)$$

3) Heat transfer coefficient between absorber tube and glass tube

$$\frac{k_{\text{eff}}}{k} = 0.317 (\text{Ra}^*)^{1/4}$$

$$(\text{Ra}^*)^{1/4} = \frac{\ln(D_{ci}/D_o)}{b^{3/4} \left(\frac{1}{D_o^{3/5}} + \frac{1}{D_{ci}^{3/5}}\right)^{5/4}} \text{Ra}^{1/4}$$

$$\frac{2\pi k_{\text{eff}}}{\ln(D_{ci}/D_o)} (T_{pm} - T_c) = h_{p-c} \pi D_o (T_{pm} - T_c)$$

$$h_{p-c} = \frac{2k_{\text{eff}}}{D_o \ln(D_{ci}/D_o)}$$

4) Heat transfer coefficient on the outer surface of the glass cover.

 $Nu = C_1 Re^n$

where C_1 and *n* are constants having the following values:

For 40 < Re < 4000, $C_1 = 0.615$, n = 0.466For $4000 < \text{Re} < 40\ 000$, $C_1 = 0.174$, n = 0.618For $40\ 000 < \text{Re} < 400\ 000$, $C_1 = 0.0239$, n = 0.805

5) Take the air properties at $104^{\circ}C$

At this temperature,

$$k = 0.0323 \text{ W/m-K}$$

 $v = 23.52 \times 10^{-6} \text{ m}^2/\text{s}$
 $Pr = 0.688$

Equations for Compound parabolic collector.

1) Heat flux

$$S = \left[I_b r_b + \frac{I_d}{C} \right] \tau \rho_e \alpha$$

2) Useful heat gain

$$q_{u} = F_{R}WL \left[S - \frac{U_{l}}{C} (T_{fi} - T_{a}) \right]$$

$$F_{R} = \frac{\dot{m}C_{p}}{bU_{l}L} \left[1 - \exp\left\{ -\frac{F'bU_{l}L}{\dot{m}C_{p}} \right\} \right]$$

$$\frac{1}{F'} = U_{l} \left[\frac{1}{U_{l}} + \frac{b}{N\pi D_{i}h_{f}} \right]$$

3) Tilt angle

$$r_b = \frac{\cos(L - \beta)\cos\delta\cos\omega + \sin(L - \beta)\sin\delta}{\cos L\cos\delta\cos\omega + \sin L\sin\delta}$$