Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018

Course: Chemical Reaction Engineering I Programme: B.Tech. CERP

Semester: V Course Code: CHEG333 Max. Marks: 100

Time: 03 hrs.

- i) Instructions: Exchange of calculators not allowed.
- ii) Make necessary assumptions

SECTION A (20 Marks)

S. No.		Marks	CO				
Q 1	In case of a first reaction, show that the times required for 75% conversion is double the time required for 50% conversion in a batch reactor.						
Q2	A first order reaction is to be treated in a series of two mix reactors. Show that the total volume of the two reactors is minimum when reactors are of equal size.	5	CO4				
Q3	Derive the process design equation for Mixed Flow reactor.	5	CO3				
Q4	Compare the Integral and Differential method of analysis for analyzing reaction kinetics data.						
	SECTION B (60 Marks)						
Q 5	A reversible reaction $A \leftrightarrow B$ is taking place in a PFR. The equilibrium constant (in terms of concentrations) is 4. 50% of the equilibrium conversion is obtained. A CSTR of equal size is placed downstream of the PFR (PFR-CSTR) to increase conversion. What is the total conversion in the reactor sequence with this arrangement?	12	CO4				
Q6	The reversible (elementary) reaction $2A \Leftrightarrow C+D$ is conducted in a CSTR at a feed rate of 100 liters/min with an inlet concentration $C_{Ao}=1.5$ mols/lit. The specific rate in the forward direction is 10 lit/mol-min and the equilibrium constant is 16. 80% of the equilibrium conversion is required. Find the size of a CSTR to achieve this conversion.	12	CO2				
Q7.	Derive the relationship between total pressure of system and partial pressure of reactants for the isothermal gas phase reaction carried out in a constant volume system.	12	CO3				
Q8	A series reaction A $_{1\text{st order}}$ B $_{Zero \text{ order}}$ C is taking place in a CSTR. Derive the Concentrations of A, B and C as functions of residence time τ , the rate constants k ₁ and k ₂) and the initial concentration of A (C _{Ao}). Assume that the concentrations of B and C in the reactor entrance stream are zero.	12	CO2				
Q9	The conversion of an irreversible first-order, liquid-phase reaction, taking place in a PFR of 500 liter capacity is 50%. In order to increase conversion, a 300 liter CSTR	12	CO3				

	is installed upstream of (before) the PFR. What is the exit conversion in the new system?								
			SECTI	ON-C (20 N	Aarks)				
Q 10	The liquid-phase irreversible reaction $A \ge B$ is carried out in a CSTR. To learn the rate law, the residence time, τ is varied and the effluent concentrations of species A are measured. Pure A enters the reactor at a concentration of 7.5 mol/liter in all the runs given below.Run1234T (min)11530100								
		C _{A,} (mol/liter)	3.2	0.72	0.46	0.21		20	CO5
	(in terms o b. Show he determine	e mole balance for the formation of the	d residence t above data n) and reaction	time). to obtain a son rate cons	straight li stant k.	ine, and th	hus	20	