Name:							
Enrolment No:							
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIE	S					
	END Semester Examination, December 2018						
Programme Name: B.Tech ASE, ASEASemester: V							
Course Name: Aircraft StructuresTime			: 03 hrs				
Course		ks : 100					
Inos. of	page(s) : 03						
	Mention Roll No. at the top of the question paper.						
2)	Do not write anything else on the question paper except your roll number.						
	ATTEMPT ALL THE PARTS OF A QUESTION AT ONE PLACE ONLY.						
 4) Internal choice is given in question number 8 and 9. Assume any suitable data if missing. SECTION A (5 x 4 = 20 Marks) 							
S. No.		Maalaa	CO				
Q 1	State and explain the principle of stationary value of the total complimentary energy with	Marks	СО				
Υ	suitable example.	5	CO2				
Q 2	Explain Bredth-Batho theory for torsion in a thin walled closed section. Also derive the	5	CO3				
	suitable mathemaical expression.						
Q 3	Determine the moment of inertia about the horizontal centroid axis of the thin walled cross-section as shown in Figure-3. Assume $r = 50 \text{ mm}$ and $t = 2 \text{mm}$.	5	CO2				
Q 4	Calculate the direct stress due to bending in idealized section as shown in Figure-4 when						
τ.	the section is subjected to a positive bending moment of $Mx = 5kN-m$. All 6 flanges have						
	equal areas of 150 mm ² . Assume skin ineffective in bending. Also, calculate the position						
	of neutral axis.						
	t						
	Gap is small and						
	r can be ignored 6	5	CO3				
	100 mm						
	4						
	5 1 60 mm						
	Figure – 3 Figure-4						

	150 mm2 a b 100 mm 150 mm2 100 mm 40 mm		
Q 4	Define Shear Center? Explain its importance in aircraft structures.	5	CO3
	SECTION B (10 x 4 = 40 Marks)		
Q 5	What are the importance of structural weight in aircraft structure? Explain the different strategy used in aircraft fuselage structure to reduce its weight.	10	CO1
Q6	A thin walled beam has the cross section shown in Figure - 6. If the beam is subjected to a bending moment about y-axis My = 1000 Nm at a particular location along its length, calculate and sketch the distribution of axial stress in the beam cross section. Assume $h = 200 \text{ mm}$ and $t = 5 \text{ mm}$.	10	CO3
	section as shown in figure -7, produced by a vertical shear force of 4.8 kN acting through its shear center. The booms each of area 300 mm ² carry all the direct stresses.	10	CO4
Q8	Determine the location of shear center of the thin walled section as shown in figure below, subjected to a vertical shear force of 50 kN through shear center. Assume t = 2mm is same for all the members. $\underbrace{\overset{50 \text{ mm}}{\underbrace{\text{S.C}}}_{50 \text{ mm}} \underbrace{\overset{50 \text{ mm}}{\underbrace{\text{C.G}}}_{20 \text{ mm}}}_{Or}_{20 \text{ mm}}$ Calculate the shear stress at each corner points (1,2,3,4,5,6) of the thin walled open	10	CO4

