

SECTION B (10 x 4 = 40 Marks)

Q 5	What are the importance of structural weight in aircraft structure? Explain the different strategy used in aircraft wings structure to reduce its weight.	10	CO1
Q 6	The thin-walled beam section as shown Figure-6 is subjected to a bending moment M_{x} applied in a negative sense. Find the position of the neutral axis and the maximum direct stress in the section.	10	CO3
Q 7	With reference to the idealized section as shown in Figure-7, find the shear flow in each webs. The area of each stringer member is $200 \mathrm{~mm}^{2}$ and $\mathrm{P}=100 \mathrm{~N}$. All dimensions are given in mm . Figure - 6 Figure - 7	10	CO4
Q8	Determine the location of shear center of the thin walled section as shown in figure below, subjected to a vertical shear force of 50 kN through shear center. Assume $\mathrm{t}=2 \mathrm{~mm}$ is same for all the members. Calculate the shear flow at each corner point of the thin walled section as shown below, subjected to a vertical shear force of 100 N in vertical direction through the shear center.	10	CO4

SECTION-C ($20 \times 2=40$ Marks)

Q 9	Determine the horizontal displacement of point 3 of the pin jointed framework as shown in Figure below using matrix method. Assume A and E are $200 \mathrm{~mm}^{2}$ and 210 GPa same for all the members. Determine the displacement of joint C and D of the pin-jointed framework as shown below using matrix method.	25	$\mathrm{CO5}$
Q 10	A thin walled wing box structure has two cells as shown below along with the dimensions. The wing box is subjected to a torque of $\mathrm{T}=10 \times 10^{6} \mathrm{Nmm}$ and the length of the wing box is 1.2 m and the material of the wing box has a shear modulus $\mathrm{G}=28 \mathrm{GPa}$. - Calculate the shear flows due to the applied torque.	25	CO4

	- Calculate the twist angle of the wing box under the applied loading. - Calculate the torsional rigidity GJ.		
Name: Enrolment No: 14 UPES			
Programme Name: B.Tech ASE, ASEA Semester $: \mathbf{V}$ Course Name : Aircraft Structures Time Course Code $:$ ASEG 335 Max. Marks : $\mathbf{1 0}$ Nos. of page(s) $: \mathbf{0 3}$ Instructions: 1) Mention Roll No. at the top of the question paper. 2) Do not write anything else on the question paper except your roll number. 3) ATTEMPT ALL THE PARTS OF A QUESTION AT ONE PLACE ONLY. 4) Internal choice is given in question number 8 and 9. Assume any suitable data if missing			
SECTION A (5 x 4 = 20 Marks)			
S. No.		Marks	CO
Q 1	Define, Strain Energy and Complementary Energy with a suitable Example?	5	CO2
Q 2	Determine the moment of inertia about the horizontal centroid axis of the thin walled cross-section as shown below. (Assume $\alpha=30^{\circ}, \mathrm{r}=50 \mathrm{~mm}$ and $\mathrm{t}=2 \mathrm{~mm}$).	5	CO2
Q 3	An Unsymmetrical fuselage section as shown in Figure below, has been idealized into an arrangement of direct stress carrying booms and shear stress carrying skin panels; the booms areas are given adjacent to booms. Calculate the direct stresses in the booms when the section is subjected to a bending moment of $\mathrm{Mx}=200 \mathrm{kN}-\mathrm{m}$.	5	CO3

Q 4	Define Shear Center? Explain its importance in aircraft structures.	5	CO3
SECTION B (10 x $4=40$ Marks)			
Q 5	What are the importance of structural weight in aircraft structure? Explain the different strategy used in aircraft fuselage structure to reduce its weight.	10	CO1
Q6	A thin walled beam has the cross section shown in Figure - 6. If the beam is subjected to a bending moment about y -axis $\mathrm{My}=1000 \mathrm{Nm}$ at a particular location along its length, calculate and sketch the distribution of axial stress in the beam cross section. Assume $\mathrm{h}=$ 200 mm and $\mathrm{t}=5 \mathrm{~mm}$.	10	CO3
	Calculate the shear flow distribution and the location of shear center in the idealized channel section as shown in figure -7 , produced by a vertical shear force of 4.8 kN acting through its shear center. The booms each of area $300 \mathrm{~mm}^{2}$ carry all the direct stresses. Figure-6 Figure-7	10	CO4
Q8	Determine the location of shear center of the thin walled section as shown in figure below, subjected to a vertical shear force of 50 kN through shear center. Assume $\mathrm{t}=$ 2 mm is same for all the members. Calculate the shear stress at each corner points $(1,2,3,4,5,6)$ of the thin walled open	10	CO4

