Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018

Course: Power Electronics & Drives (ELEG 341)

Semester: VII

Max. Marks: 100

Programme: B.Tech Electronics Engg.

Time: 03 hrs.

Instructions: All questions are compulsory.

SECTION A

S. No.		Marks	CO
Q 1	Define latching and holding current as applicable to an SCR. Also show these currents on the static V-I characteristics.	4	CO1
Q 2	Define the terms firing angle, extinction angle and angle of overlap with reference to controlled rectifiers.	4	CO2
Q 3	Classify choppers based on quadrant operation. Give at least one application of each.	4	CO3
Q 4	Give a brief comparison of variable speed dc drives and ac drives.	4	CO3,4
Q 5	Discuss the role of an anti-parallel diode in inverter operation with inductive load.	4	CO4
	SECTION B		
Q 6	"SCRs suffer from unequal voltage and current distribution during their turn off and turn on". Justify. (or) Latching current for an SCR inserted in between a dc voltage source of 200 V and the load is 100 mA. Compute the minimum width of gate-pulse current required to turn-on this SCR in case the load consist of, (a) $L=0.2 H$ (b) $R = 20 \Omega$ in series with $L = 0.2 H$.	10	CO1
Q 7	A 230 V, 50Hz one pulse SCR controlled converter driving an RL load is triggered at a firing angle of α =30° and the load current extinguishes at an angle 210°.Calculate the circuit turn off time, average output voltage and average load current for R= 5 Ω & L=2mH.	10	CO2
Q 8	A converter is feeding an RL load as shown in figure 1, below with $V_s = 220V$, R=5 Ω , L=7.5mH, f=1kHz, Duty cycle (k)= 0.5 and E= 0V. Calculate, a. minimum instantaneous load current b. peak instantaneous load current c. maximum peak to peak ripple current $v_{v_1} = v_{v_2} \Delta D_m$	10	C03

	Figure 1		
Q 9	 a. With reference to electrical drives, define: regenerative braking dynamic braking b. Describe the operation of a single phase voltage source thyristor inverter with center tapped dc supply and resistive load. 	5+5=1 0	CO3,4
	SECTION-C		
Q 10.	A delta connected load of 'r' Ω per phase is fed from Vs dc source through a 3- phase bridge inverter. Explain the operation in 120° conduction mode. Also draw associated circuits and waveforms. (or) Describe the working of a single phase half bridge inverter with R-L load (X _L >R) for all four modes of operation. Draw basic circuit model and voltage and current waveforms. Also determine the distortion factor and total harmonic distortion.	20	CO4
Q 11.	Discuss in detail the working of a $1-\Phi$ drive for speed control of a separately excited dc motor. Give relevant equations and draw the fully labelled basic circuit model. Hence, enlist the factors by which speed of the motor can be controlled.	20	CO3,4

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018

SECTION A

Course: Power Electronics & Drives (ELEG 341)

Programme: B.Tech Electronics Engg.

Time: 03 hrs.

Instructions: All questions are compulsory.

S. No. Marks CO Discuss the need for di/dt and dv/dt protection as applicable to an SCR. Q 1 4 **CO1** Q 2 Discuss the comparative advantages of a 1- Φ rectifier and a 3- Φ rectifier. 4 CO₂ Discuss the principle of dc chopper operation. Q 3 4 CO3 Describe the basic circuit layout of a $1-\Phi$ dc drive. O 4 4 CO3,4 Q 5 Enumerate the typical methods of output voltage control in an inverter for driving ac 4 **CO4** motors. SECTION B Compare R and R-C thyristor firing circuits and discuss the function of various Q 6 components used. Draw relevant circuit model. (or) For class D commutation dc source voltage is 250V, L= 20μ H and C= 50μ F. For 10 **CO1** constant load current Io of 80A, determine the peak value of current through main thyristor T_1 , capacitor and auxiliary thyristor T_2 . A 1- ϕ full converter with 230 V, 50Hz source supplies a load consisting of R=10 Ω Q 7 and a large inductance so as to render the load current constant. For a firing angle delay of 30°, and assuming $\beta > (\Pi + \alpha)$, determine : a. Average output voltage 10 **CO2** b. Average output current c. Input power factor d. Average and r.m.s. thyristor current Describe the working of a voltage commutated dc chopper. Draw suitable circuit Q 8 **CO3** 10 mode Q 9 a. With reference to electrical drives, define: 5+5=1 **CO3,4** Constant torque drive i 0

F PETROLEUM AND ENERGY STUDIES

Semester: VII

Max. Marks: 100

UPES

	 ii. Constant power drive b. Compare the advantages and disadvantages of voltage source inverter and current source inverter. SECTION-C		
Q 10	 For a 3-phase bridge connected voltage source inverter with star connected load of 15 Ω per phase, fed from 420 V dc source explain the operation in 180° conduction mode. Also draw associated circuits and waveforms. (OR) Describe the operation of a single phase voltage source thyristor inverter with center tapped dc supply for a. R-L load b. RLC underdamped load c. RLC overdamped load d. Purely inductive load Draw relevant circuit diagram and load voltage and current waveforms. 	20	CO4
Q 11	a. Enlist the merits and demerits of half wave drives.b. Describe in detail the braking operation of a rectifier controlled separately excited dc motor. Draw suitable circuit model.	20	CO3,4