Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018

Course: Pipeline Transportation of Oil and Gas	Semeste
Programme: B. Tech. Applied Petroleum Engineering with specialization in gas	Time: 03
CODE: CHGS 3007	Max. Ma

Instructions: *i*. Attempt all questions. *ii*. Missing data can be suitably assumed

Semester: 1
Time: 03 hrs.
Max. Marks: 100

SECTION A

S. No.		Marks	СО
Q1	Explain the variation in water performance curves while transporting crude oil through pipelines	5	CO1
Q2	Differentiate between NPSH _A and NPSH _R	5	CO2
Q3	Explain Line Pack volume and Line Fill Volume	5	CO2
Q4	Explain the term "Adiabatic efficiency" and hydraulic balance in compressors.	5	CO3
	SECTION B		
Q5	Explain the various components and functions of SCADA systems	10	CO5
Q6	A 16 in. crude oil pipeline (0.250 in. wall thickness) having internal roughness of 0.002 inches, is 30 miles long from point A to point B. The flow rate at the inlet A is 4000 bbl. / hr. The crude oil properties are specific gravity of 0.85 and viscosity of 10 cSt at a flowing temperature of 70° F. (a) Calculate the pressure required at A without any pipe loop. Assume, 50 psi, delivery pressure at the terminus B and a flat pipeline elevation profile. (b) If a 10 mile, portion CD, starting at milepost 10 is, looped with an identical 16 in. pipeline, calculate the reduced pressure at A.	10	CO1, CO2
Q7	A centrifugal pump, pumps liquid from a storage tank through 500 feet of NPS 16 suction piping as shown in Figure 1. The head loss in the suction piping is estimated to be 12.5 feet. (i) Calculate the NPSH available at a flow rate of 3500 gal/min. (ii) The pump data indicate NPSHR = 24 feet at 3500 gal/min and 52 feet at 4500 gal/min. Can this piping system handle the higher flow rate without the pump cavitating? (iii) If cavitation is a problem in, (ii) above, what changes are required to	10	C03

	be done to the piping system to prevent pump cavitation at 4500 gal/min? $\downarrow \downarrow \downarrow \downarrow P_{a} = 14.7 \text{ psi}$ Tank head $H - 20 \text{ ft}$ Elevation $E1 - 125 \text{ ft}$ Total suction piping - 500 ft - 16"/0.250" wall Total suction loss in suction piping - 500 ft - 16"/0.250" wall Total suction loss in suction piping - h Specific gravity Sg - 0.85 Viscosity - 1.9 cSt $\downarrow \downarrow \downarrow P_{a} = 14.7 \text{ psi}$ Total suction loss in suction piping - 115 ft		
	FIGURE- 1		
Q8	Explain the reasons for the two-phase flow in pipelines. Also, explain with figures		
	the different flow patterns observed in two-phase flow. Explain the Bakers Chart to identify the flow pattern in multiphase flow	10	CO5
	SECTION-C		
00	In the Figure 2 shown below the ningling from station A to station D is 40 miles	20	CO2
Q9	In the Figure 2 , shown below, the pipeline from station A to station B is 48 miles long and is 18 in. in nominal diameter, with 0.281 in. wall thickness. It is,	20	CO2, CO3,
	constructed of 5LX-65 grade steel. At station A, crude oil of specific gravity, 0.85		CO4
	and 10 cSt viscosity enters the pipeline at a flow rate of 6000 barrel per hour. At		
	station, C (milepost-22) a new stream of crude oil with specific gravity of 0.82 and		
	3.5 cSt viscosity enters the pipeline at a flow rate of 1000 barrel per hour. The mixed		
	stream then continues to station D (milepost 32) where 3000 barrel per hour is,		
	stripped off the pipeline. The remaining volume continues to the end of the pipeline		
	at point B. a) Calculate the pressure required at dispatch station A to deliver the		
	crude oil at station B at a minimum delivery pressure of 50 psi. Also calculate the		
	specific gravity and viscosity of crude oil delivered at station B. Assume elevations		
	at A,C,D and B to be 100, 150, 250 and 300 feet respectively. Use, Colebrook-White		

APPENDIX

All Notations have their usual meaning and units

1. Reynolds Equation for Gas Pipelines:

$$Re = 0.5134 \left(\frac{P_b}{T_b}\right) \left(\frac{GQ}{\mu D}\right)$$
(SI)
$$Re = 0.0004778 \left(\frac{P_b}{T_b}\right) \left(\frac{GQ}{\mu D}\right)$$
(USCS)

2. Reynolds No. for Crude Oil Pipelines

a) R=92.24 Q/(v D)

Where: Q=Flow rate, bbl/day; D=Internal diameter, in.; v=Kinematic viscosity, cSt

b) R=353,678 Q/(vD)

Where: Q=Flow rate, m³/hr.; D=Internal diameter, mm; v= Kinematic viscosity, cSt

3. Pressure Drop per unit length for oil pipelines (USCS)

$$Pm = 0.0605 fQ^2 (Sg/D^5)$$

Pm = pressure drop due to friction (psi/mile); Q= Liquid flow rate (bbl. per day); D = Pipe

Internal- diameter, in.

4. Modified Colebrook White Equation

$$\frac{1}{\sqrt{f}} = -2\log_{10}\left(\frac{e}{3.7D} + \frac{2.51}{\operatorname{Re}\sqrt{f}}\right)$$

5. Coversion Equations for SSU to Centistokes

Centistokes = 0.226(SSU) -
$$\frac{195}{SSU}$$
 32 \leq SSU \leq 100

$$Centistokes = 0.220(SSU) - \frac{135}{SSU}$$

6. Horsepower required to compress gas in compressor

 $SSU \succ 100$

$$HP = 0.0857 \left(\frac{\gamma}{\gamma - 1}\right) QT_1 \left(\frac{Z_1 + Z_2}{2}\right) \left(\frac{1}{\eta_a}\right) \left[\left(\frac{P_2}{P_1}\right)^{\frac{\gamma - 1}{\gamma}} - 1\right] \qquad \text{Adiabatic Efficiencey of Compressor}$$

$$\eta_a = \left(\frac{T_1}{T_2 - T_1}\right) \left[\left(\frac{z_1}{z_2}\right) \left(\frac{P_2}{P_1}\right)^{\frac{y-1}{y}} - 1 \right]$$

8. BHP required to pump the liquid

7.

$$BHP = \frac{QP}{2449E}$$

Q=flow rate (bbl./hr.);

P=Differentia pressure (psi)

9. Relation between Head and Pressure drop in liquid pipelines

$$H(feet) = \frac{2.31psi}{G}$$