| Name: <br> Enrolment No: |  |  |  |
| :---: | :---: | :---: | :---: |
| UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018 |  |  |  |
| Course: <br> Programme: <br> Time: 03 hrs. <br> Instructions: | Orbital Mechanics Semester: | VII |  |
|  | me: B.Tech ASE, ASEA |  |  |
|  | 3 hrs. Please assume any missing data Mar. Marks: | 100 |  |
| SECTION A |  |  |  |
| S. No. |  | Marks | CO |
| Q1 | State and explain Kepler's three laws of planetary motion | 4 | CO1 |
| Q2 | Classify Earth orbits based on altitude. | 4 | CO1 |
| Q3 | What do you mean by following: <br> a) Synodic period <br> b) Sidereal day | 4 | CO2 |
| Q4 | Illustrate the ecliptic plane. Thus explain vernal equinox. | 4 | CO 3 |
| Q5 | Show that the speed of a satellite in an elliptic orbit at the either end of the minor axis is the same as that of a satellite in a circular orbit at that point. | 4 | CO4 |
| SECTION B |  |  |  |
| Q6 | Derive the equation of motion for the restricted three-body problem. | 10 | CO3 |
| Q7 | Derive an expression for sphere of influence radius. | 10 | CO3 |
| Q8 | A meteoroid is first observed approaching the earth when it is $402,000 \mathrm{~km}$ from the center of the earth with a true anomaly of $150^{\circ}$. If the speed of the meteoroid at that time is $2.23 \mathrm{~km} / \mathrm{s}$, calculate <br> a) the eccentricity of the trajectory <br> b) the altitude at closest approach <br> c) the speed at closest approach | 10 | $\begin{aligned} & \mathrm{CO1}, \\ & \mathrm{CO} 2 \end{aligned}$ |
| Q9 | Derive expression for the orbital specific energy in terms of the orbital constants ' $h$ ' and ' $e$ '. <br> OR <br> Derive expression for the orbital specific energy for elliptic orbit and show that it is independent of eccentricity. | 10 | CO4 |
| SECTION-C |  |  |  |
| Q10 | With a single delta-v maneuver, the earth orbit of a satellite is to be changed from a circle of radius 15000 km to a coplanar ellipse with perigee altitude of 500 km and apogee radius of 22000 km . <br> a) Calculate the magnitude of the required delta-v and the change in the flight path angle $\Delta \gamma$. <br> b) What is the minimum total delta-v if the orbit change is accomplished instead by a Hohmann transfer? | 20 | CO4 |


| Q11 | The space station and spacecraft A and B are all in the same circular earth orbit of 350 km altitude. Spacecraft A is 600 km behind the space station and spacecraft B is 600 km ahead of the space station. At the same instant, both spacecraft apply a $\Delta v_{\perp}$ so as to arrive at the space station in one revolution of their phasing orbits. <br> a) Calculate the times required for each spacecraft to reach the space station. <br> b) Calculate the total delta-v requirement for each spacecraft <br> OR <br> At point A on its earth orbit, the radius, speed and flight path angle of a satellite are $\mathrm{r}_{\mathrm{A}}=12,756 \mathrm{~km}, \mathrm{v}_{\mathrm{A}}=6.5992 \mathrm{~km} / \mathrm{s}$ and $\gamma_{\mathrm{A}}=20^{\circ}$. At point B , at which the true anomaly is $150^{\circ}$, an impulsive maneuver causes $\Delta \mathrm{v}_{\perp}=+0.75820 \mathrm{~km} / \mathrm{s}$ and $\Delta \mathrm{v}_{\mathrm{r}}=0$. <br> a) What is the time of flight from $A$ to $B$ ? <br> b) What is the rotation of the apse line as a result of this maneuver? | 20 | $\begin{gathered} \mathrm{CO3} \\ \mathrm{CO4} \end{gathered}$ |
| :---: | :---: | :---: | :---: |


| Name: <br> Enrolment No: |  |  |  |
| :---: | :---: | :---: | :---: |
| UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018 |  |  |  |
| Course: <br> Programme: <br> Time: 03 hrs. Instructions: | Orbital Mechanics Semester: | VII |  |
|  | mme: B.Tech ASE, ASEA |  |  |
|  | $3 \mathrm{hrs}$. Max. Marks: | 100 |  |
| SECTION A |  |  |  |
| S. No. |  | Marks | CO |
| Q1 | Describe Geocentric Equatorial frame. Draw a well labeled diagram | 4 | CO1 |
| Q2 | Draw a well labelled diagram showing six orbital elements | 4 | CO2 |
| Q3 | Use Newton's cannonball experiment to explain an orbit. | 4 | CO1 |
| Q4 | State and explain Kepler's three laws of planetary motion | 4 | CO 3 |
| Q5 | Define: <br> a) Ecliptic plane <br> b) GEO <br> c) Sphere of influence <br> d) Phasing maneuver | 4 | CO4 |
| SECTION B |  |  |  |
| Q6 | For two bodies in a circular orbit around sun, having a common apse line, show that phase angle varies linearly with time. If phase angle was $\theta$ at time ' $t$ ' $=0$, how long will it take to become $\theta$ again? Derive the expression both in terms of orbital angular velocity and time periods of the orbits | 10 | $\begin{aligned} & \mathrm{CO} 1, \\ & \mathrm{CO} 2 \end{aligned}$ |
| Q7 | Derive equation of motion for restricted three body problem | 10 | CO 3 |
| Q8 | Derive an expression for sphere of influence radius. | 10 | CO 3 |
| Q9 | Find the total delta-v requirement for a bi-elliptical Hohmann transfer from a geocentric circular orbit of 7000 km radius to one of 105000 km radius. Let the apogee of the first ellipse be 210000 km . Compare the delta-v schedule and total flight time with that for an ordinary single Hohmann transfer ellipse. <br> OR <br> Two geocentric elliptic orbits have common apse lines and their perigees are on the same side of the Earth. The first orbit has perigee radius of $r_{p}=7000 \mathrm{~km}$ and $e=0.3$, whereas second orbit $r_{p}=32,000 \mathrm{~km}$ and $\mathrm{e}=0.5$ <br> a) Find the minimum total delta-v and the time of flight for a transfer from the perigee of the inner orbit to the apogee of the outer orbit. <br> b) Do part (a) for a transfer from the apogee of the inner orbit to the perigee of the outer orbit. | 10 | CO4 |

## SECTION-C

| Q10 | A spacecraft is in a 200 km circular earth orbit. At $\mathrm{t}=0$, it fires a projectile in the <br> direction opposite to the spacecraft's motion. Thirty minutes after leaving the <br> spacecraft, the projectile impacts the earth. What delta-v was imparted to the <br> projectile? Neglect the atmosphere. | $\mathbf{2 0}$ | $\mathbf{C O 4}$ |
| :--- | :--- | :---: | :---: |
| Q11 | An earth satellite is in an 8000 km by 16000 km radius orbit. Calculate the delta-v <br> and the true anomaly $\theta_{1}$ required to obtain a 7000 km by 21000 km radius orbit <br> whose apse line is rotated $25^{\circ}$ counterclockwise. Indicate the orientation $\varphi$ of $\Delta \mathrm{v}$ to <br> the local horizon. <br> OR <br> It is desired to shift the longitude of a GEO satellite $12 \circ$ westward in three <br> revolutions of its phasing orbit. Calculate the delta-v requirement. | $\mathbf{2 0}$ | $\mathbf{C O 3 ,}$ |
| $\mathbf{C O 4}$ |  |  |  |

