Name:						
Enrolme	Name: Enrolment No:					
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES						
	End Semester Examination, December 2018					
	Course: Orbital Mechanics Semester: VII					
Program		. 100				
Time: 03 hrs.Max. Marks:Instructions:Please assume any missing data		: 100				
mstruct	SECTION A					
S. No.		Marks	СО			
Q1	State and explain Kepler's three laws of planetary motion	4	CO1			
Q2	Classify Earth orbits based on altitude.	4	CO1			
Q3	What do you mean by following:	•	001			
X ²	a) Synodic period	4	CO2			
	b) Sidereal day					
Q4	Illustrate the ecliptic plane. Thus explain vernal equinox.	4	CO3			
Q5	Show that the speed of a satellite in an elliptic orbit at the either end of the minor axis	4	CO4			
	is the same as that of a satellite in a circular orbit at that point.	-	04			
	SECTION B	1				
Q6	Derive the equation of motion for the restricted three-body problem.	10	CO3			
Q7	Derive an expression for sphere of influence radius.	10	CO3			
Q8	A meteoroid is first observed approaching the earth when it is 402,000 km from the center of the earth with a true anomaly of 150°. If the speed of the meteoroid at that					
	time is 2.23 km/s, calculate	10	CO1,			
	a) the eccentricity of the trajectory	10	CO2			
	b) the altitude at closest approach					
0.0	c) the speed at closest approach					
Q9	Derive expression for the orbital specific energy in terms of the orbital constants 'h' and 'e'.					
	OR	10	CO4			
	Derive expression for the orbital specific energy for elliptic orbit and show that it is independent of eccentricity.					
	SECTION-C					
Q10	With a single delta-v maneuver, the earth orbit of a satellite is to be changed from a					
X ¹⁰	circle of radius 15 000 km to a coplanar ellipse with perigee altitude of 500 km and					
	apogee radius of 22 000 km.					
	a) Calculate the magnitude of the required delta-v and the change in the flight	20	CO4			
	path angle $\Delta \gamma$.					
	b) What is the minimum total delta-v if the orbit change is accomplished instead by a Hohmann transfer?					

Q11	 The space station and spacecraft A and B are all in the same circular earth orbit of 350 km altitude. Spacecraft A is 600 km behind the space station and spacecraft B is 600 km ahead of the space station. At the same instant, both spacecraft apply a ∆v⊥ so as to arrive at the space station in one revolution of their phasing orbits. a) Calculate the times required for each spacecraft to reach the space station. b) Calculate the total delta-v requirement for each spacecraft 	20	CO3, CO4
	 At point A on its earth orbit, the radius, speed and flight path angle of a satellite are r_A =12,756 km, v_A =6.5992 km/s and γ_A =20°. At point B, at which the true anomaly is 150°, an impulsive maneuver causes Δv₁=+0.75820 km/s and Δv_r =0. a) What is the time of flight from A to B? b) What is the rotation of the apse line as a result of this maneuver? 		

Name:			
Name: Enrolment No:			
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES		
C	End Semester Examination, December 2018		
Course Progra		VII	
Time: 03 hrs. Max. Marks:		s: 100	
Instruc			
C N	SECTION A		
S. No.		Marks	CO
Q1	Describe Geocentric Equatorial frame. Draw a well labeled diagram	4	CO1
Q2	Draw a well labelled diagram showing six orbital elements	4	CO2
Q3	Use Newton's cannonball experiment to explain an orbit.	4	CO1
Q4	State and explain Kepler's three laws of planetary motion	4	CO3
Q5	Define: a) Ecliptic plane b) GEO c) Sphere of influence d) Phasing maneuver	4	CO4
	SECTION B		
Q6	For two bodies in a circular orbit around sun, having a common apse line, show that phase angle varies linearly with time. If phase angle was θ at time 't' = 0, how long will it take to become θ again? Derive the expression both in terms of orbital angular velocity and time periods of the orbits	10	CO1, CO2
Q7	Derive equation of motion for restricted three body problem	10	CO3
Q8	Derive an expression for sphere of influence radius.	10	CO3
Q9	 Find the total delta-v requirement for a bi-elliptical Hohmann transfer from a geocentric circular orbit of 7000 km radius to one of 105 000 km radius. Let the apogee of the first ellipse be 210 000 km. Compare the delta-v schedule and total flight time with that for an ordinary single Hohmann transfer ellipse. OR Two geocentric elliptic orbits have common apse lines and their perigees are on the same side of the Earth. The first orbit has perigee radius of r_p=7000km and e=0.3, whereas second orbit r_p=32,000km and e=0.5 a) Find the minimum total delta-v and the time of flight for a transfer from the perigee of the inner orbit to the apogee of the outer orbit. b) Do part (a) for a transfer from the apogee of the inner orbit to the perigee of 	10	CO4

SECTION-C			
Q10	A spacecraft is in a 200 km circular earth orbit. At $t = 0$, it fires a projectile in the direction opposite to the spacecraft's motion. Thirty minutes after leaving the spacecraft, the projectile impacts the earth. What delta-v was imparted to the projectile? Neglect the atmosphere.	20	CO4
Q11	An earth satellite is in an 8000 km by 16 000 km radius orbit. Calculate the delta-v and the true anomaly θ_1 required to obtain a 7000 km by 21 000 km radius orbit whose apse line is rotated 25° counterclockwise. Indicate the orientation φ of Δv to the local horizon. OR It is desired to shift the longitude of a GEO satellite 12° westward in three revolutions of its phasing orbit. Calculate the delta-v requirement.	20	CO3, CO4