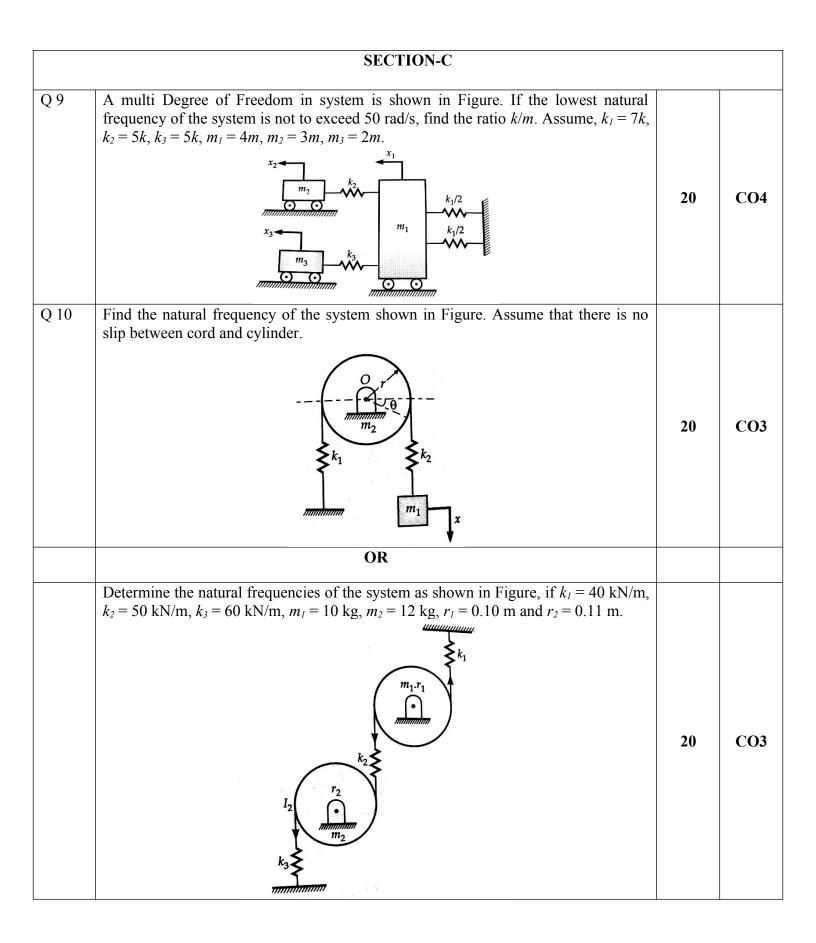
Name:

Enrolment No:

UPES

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES


Mid Semester Examination, September/ October 2018 Maahatw

Programme Name:	Mechatronics
Course Name :	Mechanical Vibrations
Course Code :	MHEG 483

Semester : VII Time : 03 hrs Max. Marks: 100

SECTION A

S. No.		Marks	CO
Q 1	Explain vibration isolation.		CO1
Q 2	Describe the sources of excitation in forced vibration.		CO1
Q 3	Describe the vibration measuring instruments.		CO1
Q 4	Explain the principle of vibration absorber.	5	CO1
	SECTION B	1	
Q 5	Find the natural frequency of vibration of the system for small amplitudes. If k_1 , k_2 , a and b are to be fixed, determine the value of b for which the system will not vibrate. The system is shown in Figure.		CO2
Q 6	Derive the expression for the response of a damped SDoF system under excitation caused by the harmonic motion of the base.		CO1
Q 7	A vibratory body of mass 150 kg supported on springs of total stiffness 1050 kN/m has a rotating unbalance force of 525 N at a speed of 6000 rpm. If the damping factor is 0.3, determine (a) the amplitude caused by the unbalance and its phase angle (b) the transmissibility and (c) the actual force transmitted and its phase angle.	10	CO2
Q 8	Derive the general equation for the transverse vibration of beams.	10	CO1
	OR		
	Derive the frequency equation of torsional vibrations for a free-free shaft of length <i>l</i> .	10	CO1

