Name: Enrolm	ment No:			
	UNIVERSITY OF PETROLEUM AND ENERGY STU	DIES		
_	End Semester Examination, December 2018	_		
0	mme Name: B.Sc. (Honours) (Physics and Chemistry) Semo		TT	
	Course Name: Generic-Electives I (Mathematics)-MatricesTimeCourse Code: MATH 1029Max. Ma		: 03 Hrs. arks : 100	
	page(s) : 02		U	
Instruc				
Attemp	t all questions from Section A (each carrying 4 marks); attempt all questions fr	om Section	B (Each	
carrying	g 8 marks) and attempt all questions from Section C (each carrying 20 marks).			
	SECTION A			
S. No.	(Attempt all questions)		00	
	Lat A has a severe matrix of and an a X a Drove that if A is an idempotent matrix th	Marks	CO	
Q 1	Let A be a square matrix of order $n \times n$. Prove that if A is an idempotent matrix, the the det(A) is equal to either 0 or 1.	^{en} 4	CO1	
Q 2	[2 4 2]			
	Under what condition, the rank of the matrix $\begin{bmatrix} 3 & 1 & 2 \\ 1 & 0 & x \end{bmatrix}$ is 3?	4	CO2	
Q 3	Show that the vectors $X_1 = (a_1, b_1)$ and $X_2 = (a_2, b_2)$ are linearly dependent if an only if $a_1b_2 - a_2b_1 = 0$.	4	CO3	
Q 4	Form the matrix whose eigenvalues are $\alpha - 5$, $\beta - 5$ and $\gamma - 5$ where α , β , γ a the eigenvalues of the matrix $\begin{bmatrix} -1 & -2 & -3 \\ 4 & 5 & -6 \\ 7 & -8 & 9 \end{bmatrix}$.	re 4	CO4	
Q 5	Suppose C is a 5×5 matrix all of whose eigenvalues are positive integers. If the determinant of C is 12 and the trace of C is 9 then find the characteristic polynomial of C.		CO4	
	SECTION B	·		
	(Q6,Q8, Q10 are compulsory and Q7 & Q9 has internal choice)			
Q 6	Find the values of l, m and n if the matrix $A = \begin{bmatrix} 0 & 2m & n \\ l & m & -n \\ l & -m & n \end{bmatrix}$ is orthogonal. Also find A^{-1} .	8	CO1	
Q 7	Investigate for what values of λ and μ the equations $x + 2y + z = 8$; $2x + 2y + 2z = 13$; $3x + 4y + \lambda z = \mu$ have (i) no solution (ii) unique solution, and (iii) many solutions. OR Show that the system of equations $3x + 4y + 5z = \alpha$; $4x + 5y + 6z = \beta$; $5x + 6y + 7z = \gamma$ is consistent only if α , β and γ are in arithmetic progression.	8	CO2	

Q 8	Examine the following vectors for linear dependence or independence. If dependent, find the relation among them. $X_1 = (1, -1, 3, 2), X_2 = (-2, -5, 2, 2), X_3 = (4, 3, 4, 2)$	8	CO3
Q 9	Find the characteristic equation of the matrix $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ and verify Cayley- Hamilton theorem for matrix A. Also express $A^5 - 4A^4 - 7A^3 + 11A^2 - A - 10I$ as a linear polynomial in A. (Here I is the identity matrix.) OR Show that the matrix $A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$ is not diagonalizable.	8	CO4
Q 10	Find the Characteristic and Minimal polynomial of the matrix $A = \begin{bmatrix} 2 & 7 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & -2 & 4 \end{bmatrix}$	8	CO5
	SECTION-C (Q 11 is compulsory and Q 12 has internal choice)		
Q 11	 (a) Suppose k is positive and the matrix A =	10+10	CO3
Q12	Determine a diagonal matrix orthogonally similar to the real symmetric matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$. Also find the modal matrix. OR For a symmetric matrix <i>A</i> , the eigenvectors are $[1, 1, 1]^T$, $[1, -2, 1]^T$ corresponding to $\lambda_1 = 6$ and $\lambda_2 = 12$. Find the eigenvector corresponding to $\lambda_3 = 6$ and find the matrix <i>A</i> .	20	CO4

No: UNIVERSITY OF PETROLEUM AND ENERGY STU End Semester Examination, December 2018 e Name: B.Sc. (Honours) (Physics and Chemistry) Seme ne : Generic-Electives I (Mathematics)-Matrices Time de : MATH 1029 Max. e(s) : 02 s: questions from Section A (each carrying 4 marks); attempt all questions fr harks) and attempt all questions from Section C (each carrying 20 marks). SECTION A (Attempt all questions)	ester : I : 03 I Marks : 100)
End Semester Examination, December 2018 e Name: B.Sc. (Honours) (Physics and Chemistry) Seme ne : Generic-Electives I (Mathematics)-Matrices Time de : MATH 1029 Max e(s) : 02 s: questions from Section A (each carrying 4 marks); attempt all questions fr fr harks) and attempt all questions from Section C (each carrying 20 marks). SECTION A	ester : I : 03 I Marks : 100)
e Name: B.Sc. (Honours) (Physics and Chemistry) Sema ne : Generic-Electives I (Mathematics)-Matrices Time le : MATH 1029 Max e(s) : 02 s: questions from Section A (each carrying 4 marks); attempt all questions fr harks) and attempt all questions from Section C (each carrying 20 marks). SECTION A	: 03 l Marks : 100)
ne : Generic-Electives I (Mathematics)-Matrices Time de : MATH 1029 Max. e(s) : 02 S: questions from Section A (each carrying 4 marks); attempt all questions from Section C (each carrying 20 marks). SECTION A	: 03 l Marks : 100)
de : MATH 1029 Max. e(s) : 02 s: questions from Section A (each carrying 4 marks); attempt all questions from harks) and attempt all questions from Section C (each carrying 20 marks). SECTION A	Marks : 100)
e(s) : 02 s: questions from Section A (each carrying 4 marks); attempt all questions fr harks) and attempt all questions from Section C (each carrying 20 marks). SECTION A		
s: questions from Section A (each carrying 4 marks); attempt all questions fr narks) and attempt all questions from Section C (each carrying 20 marks). SECTION A	om Section	B (Eacl
questions from Section A (each carrying 4 marks); attempt all questions fr narks) and attempt all questions from Section C (each carrying 20 marks). SECTION A	om Section	B (Eacl
harks) and attempt all questions from Section C (each carrying 20 marks). SECTION A		
(Attempt all questions)		
	Marks	CO
et <i>n</i> be an odd positive integer and let <i>K</i> be an $n \times n$ skew symmetric matrix. Pro- at <i>K</i> is singular.	ve 4	CO1
nd the values of x for which the rank of the matrix $\begin{bmatrix} 2 & 4 & 2 \\ 3 & 1 & 2 \\ 1 & 0 & x \end{bmatrix}$ is 2?	4	CO2
the vectors $(0, 1, a)$; $(1, a, 1)$ and $(a, 1, 0)$ are linearly dependent then find the lue of a .	ne 4	CO3
nder what condition does the matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$; $a, b, c, d \in \mathbb{R}$ have no regenvalues?	al 4	CO4
uppose C is a 6×6 matrix with eigenvalues 0, 1 and 3 of multiplicities 3, 2 and spectively. Find the determinant of the matrix $2I - C$. (Here I is the identi atrix.)		CO4
SECTION B		
(Q6,Q8, Q10 are compulsory and Q7 & Q9 has internal choice)		
ove that the matrix $A = \frac{1}{2} \begin{vmatrix} \sqrt{2} & -i\sqrt{2} & 0 \\ i\sqrt{2} & -\sqrt{2} & 0 \end{vmatrix}$ is unitary and hence find A^{-1} .	8	CO1
	0	CO2
00	$\begin{bmatrix} 0 & 0 & 2 \end{bmatrix}$ stigate for what values of λ and μ the equations $x + y + z = 6$; $x + 2y + 3z = 10$; $x + 2y + \lambda z = \mu$ (i) no solution (ii) unique solution, and (iii) many solutions. OR	$\begin{bmatrix} 0 & 0 & 2 \end{bmatrix}$ stigate for what values of λ and μ the equations $x + y + z = 6$; $x + 2y + 3z = 10$; $x + 2y + \lambda z = \mu$ (i) no solution (ii) unique solution, and (iii) many solutions.

	Are the vectors		
Q 8	Are the vectors $X_1 = \begin{bmatrix} 1\\ 1\\ -2 \end{bmatrix}, X_2 = \begin{bmatrix} 3\\ -1\\ -2 \end{bmatrix}, X_3 = \begin{bmatrix} -1\\ 1\\ 0 \end{bmatrix}$ linearly dependent? If yes, then find a non-trivial dependence relationship among these vectors.	8	CO3
Q 9	Verify Cayley-Hamilton theorem for matrix $A = \begin{bmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{bmatrix}$. Hence find A^{-1} if it exists. OR Show that the matrix $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -3 & 3 \end{bmatrix}$ is not diagonalizable.	8	CO4
Q 10	Find the Characteristic and Minimal polynomial of the matrix $A = \begin{bmatrix} 4 & 1 & 0 & 0 & 0 \\ 0 & 4 & 1 & 0 & 0 \\ 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 0 & 4 \end{bmatrix}$ SECTION-C	8	CO5
	(Q 11 is compulsory and Q 12 has internal choice)		
	(a) Solve the equation $AX = B$ where		
Q 11	$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}$ by Choleski decomposition method. (b) In a given electrical network, the equations for the currents i_1, i_2, i_3 are given by $2i_1 + 3i_2 + i_3 = 9; i_1 + 2i_2 + 3i_3 = 6; 3i_1 + i_2 + 2i_3 = 8.$ Apply Doolittle's method to find the value of i_1, i_2, i_3 .	10+10	CO3
Q12	Determine a diagonal matrix orthogonally similar to the real symmetric matrix $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$. Also find the model matrix. OR Find a matrix <i>P</i> which transform the matrix $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$ to diagonal form. Hence find A^4 .	20	CO4