

Q 8	Examine the following vectors for linear dependence or independence. If dependent, find the relation among them. $X_{1}=(1,-1,3,2), X_{2}=(-2,-5,2,2), X_{3}=(4,3,4,2)$	8	$\mathrm{CO3}$
Q9	Find the characteristic equation of the matrix $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$ and verify CayleyHamilton theorem for matrix A. Also express $A^{5}-4 A^{4}-7 A^{3}+11 A^{2}-A-10 I$ as a linear polynomial in A. (Here I is the identity matrix.) OR Show that the matrix $A=\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right]$ is not diagonalizable.	8	CO4
Q 10	Find the Characteristic and Minimal polynomial of the matrix $A=\left[\begin{array}{cccc} 2 & 7 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & -2 & 4 \end{array}\right]$	8	$\mathrm{CO5}$
SECTION-C (Q 11 is compulsory and $\mathbf{Q} 12$ has internal choice)			
Q 11	(a) Suppose k is positive and the matrix $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & k \\ 1 & k & 3\end{array}\right]$ is such that $\operatorname{det}(A)=1$. Consider the unique decomposition $A=L U$, where L is a lower triangular matrix and $U=L^{T}$, where L^{T} denotes the transpose matrix of L. Let $X \in \mathbb{R}^{3}$ and $b=$ $\left[\begin{array}{lll}1, & 1, & 3\end{array}\right]^{t}$. Find the solution of the system $A X=b$ where $X=\left[\begin{array}{lll}x, & y, & z\end{array}\right]^{t}$. (b) In a given electrical network, the equations for the currents i_{1}, i_{2}, i_{3} are given by $2 i_{1}+3 i_{2}+i_{3}=9 ; i_{1}+2 i_{2}+3 i_{3}=6 ; 3 i_{1}+i_{2}+2 i_{3}=8 .$ Apply Crout's method to find the value of i_{1}, i_{2}, i_{3}.	10+10	$\mathrm{CO3}$
Q12	Determine a diagonal matrix orthogonally similar to the real symmetric matrix $A=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$. Also find the modal matrix. OR For a symmetric matrix A, the eigenvectors are $[1,1,1]^{T},[1,-2,1]^{T}$ corresponding to $\lambda_{1}=6$ and $\lambda_{2}=12$. Find the eigenvector corresponding to $\lambda_{3}=6$ and find the matrix A.	20	CO4

Name: Enrolment No:			
Progra Course Course Nos. of Instruc Attemp carryin	UNIVERSITY OF PETROLEUM AND ENERGY STUD \quad End Semester Examination, December 2018	ES $\begin{aligned} & : I \\ & : 03 \end{aligned}$ arks : 10 Section	rs. (Each
SECTION A (Attempt all questions)			
S. No.		Marks	CO
Q 1	Let n be an odd positive integer and let K be an $n \times n$ skew symmetric matrix. Prove that K is singular.	4	CO1
Q 2	Find the values of x for which the rank of the matrix $\left[\begin{array}{lll}2 & 4 & 2 \\ 3 & 1 & 2 \\ 1 & 0 & x\end{array}\right]$ is 2?	4	CO2
Q 3	If the vectors $(0,1, a) ;(1, a, 1)$ and $(a, 1,0)$ are linearly dependent then find the value of a.	4	CO3
Q 4	Under what condition does the matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] ; a, b, c, d \in \mathbb{R}$ have no real eigenvalues?	4	CO4
Q 5	Suppose C is a 6×6 matrix with eigenvalues 0,1 and 3 of multiplicities 3,2 and 1 respectively. Find the determinant of the matrix $2 I-C$. (Here I is the identity matrix.)	4	CO4
SECTION B$($ Q6,Q8, Q10 are compulsory and Q7 \& Q9 has internal choice)			
Q 6	Prove that the matrix $A=\frac{1}{2}\left[\begin{array}{ccc}\sqrt{2} & -i \sqrt{2} & 0 \\ i \sqrt{2} & -\sqrt{2} & 0 \\ 0 & 0 & 2\end{array}\right]$ is unitary and hence find A^{-1}.	8	CO1
Q 7	Investigate for what values of λ and μ the equations $x+y+z=6 ; x+2 y+3 z=10 ; x+2 y+\lambda z=\mu$ have (i) no solution (ii) unique solution, and (iii) many solutions. OR Examine the consistency of the following system and if consistent solve for x, y, z $-\frac{1}{x}+\frac{3}{y}+\frac{4}{z}=30 ; \quad \frac{3}{x}+\frac{2}{y}-\frac{1}{z}=9 ; \quad \frac{2}{x}-\frac{1}{y}+\frac{2}{z}=10$	8	CO2

Q 8	Are the vectors $X_{1}=\left[\begin{array}{c} 1 \\ 1 \\ -2 \end{array}\right], X_{2}=\left[\begin{array}{c} 3 \\ -1 \\ -2 \end{array}\right], \quad X_{3}=\left[\begin{array}{c} -1 \\ 1 \\ 0 \end{array}\right]$ linearly dependent? If yes, then find a non-trivial dependence relationship among these vectors.	8	CO3
Q 9	it exists. OR Show that the matrix $A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -3 & 3\end{array}\right]$ is not diagonalizable.	8	CO4
Q 10	Find the Characteristic and Minimal polynomial of the matrix $A=\left[\begin{array}{lllll} 4 & 1 & 0 & 0 & 0 \\ 0 & 4 & 1 & 0 & 0 \\ 0 & 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 0 & 4 \end{array}\right]$	8	$\mathrm{CO5}$
SECTION-C(Q 11 is compulsory and Q 12 has internal choice)			
Q 11	(a) Solve the equation $A X=B$ where $A=\left[\begin{array}{lll} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{array}\right], \quad X=\left[\begin{array}{l} x \\ y \\ z \end{array}\right] \text { and } B=\left[\begin{array}{l} 1 \\ 1 \\ 3 \end{array}\right]$ by Choleski decomposition method. (b) In a given electrical network, the equations for the currents i_{1}, i_{2}, i_{3} are given by $2 i_{1}+3 i_{2}+i_{3}=9 ; i_{1}+2 i_{2}+3 i_{3}=6 ; 3 i_{1}+i_{2}+2 i_{3}=8$ Apply Doolittle's method to find the value of i_{1}, i_{2}, i_{3}.	10+10	CO3
Q12	Determine a diagonal matrix orthogonally similar to the real symmetric matrix $A=\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$. Also find the model matrix. OR Find a matrix P which transform the matrix $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3\end{array}\right]$ to diagonal form. Hence find A^{4}.	20	CO4

