Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018

Course: Electricity and Magnetism (PHYS 1016)

Semester: I

Programme: BSc (H) Chemistry & Mathematics (Generic Elective)

Time: 03 hrs.

Max. Marks: 100

Instructions: Use suitable diagrams/illustrations whenever you think they will be required. All questions are compulsory. Question no 9 and 11 have internal choices. Bold face letters in the question are vector quantities.

	SECTION A		
S. No.		Marks	CO
Q 1	Using Gauss's Law, derive the expression of electric field intensity due to infinite sheet of charge having constant surface charge density (σ).	[4]	CO1
Q 2	A parallel plate capacitor has circular plates of 8.22 cm radius and 1.31 mm separation. (a) Calculate the capacitance. (b) What charge will appear on the plates if a potential difference of 116 V is applied?	[4]	CO3
Q 3	State Biot-Savart's Law and Ampere's Circuit Law for a current carrying element and write down their merits and demerits.	[4]	CO1
Q 4	Find the value of the magnetic field that will cause a maximum force of 7.0×10^{-3} N on a 20.0 cm straight wire carrying a current of 10.0 A.	[4]	CO3
Q 5	A square coil of side 16 cm has 200 turns and rotates in a uniform magnetic field of magnitude 0.05 T. If the peak emf is 12 V, what is the angular velocity of the coil?	[4]	CO2
	SECTION B		
Q 6	Show that $\nabla f A = \nabla f A + f(\nabla A)$ where <i>f</i> is a scalar field and <i>A</i> is a vector field.	[10]	CO1
Q 7	Derive the expression of electric field intensity inside uniformly charge solid sphere of radius R.	[10]	CO2
Q 8	Magnitude of an average electric field normally present in the earth atmosphere just above the surface of the earth is 150 N/C directed downward. What is the total net charge carried by the earth? Assume the earth to be a solid sphere conductor of radius 6.4×10^6 m.	[10]	CO3
Q 9	Define the terms self-inductance and mutual inductance and hence derive the	[10]	CO4

	expression for the mutual-inductance of two coils of different radii R_1 and R_2 .		
	OR		
	State the Poynting's theorem (work-energy theorem for electrodynamics). Derive this expression $(\nabla \cdot J = \frac{-\partial \rho}{\partial t})$ of the continuity equation (based on conservation of charge). Where <i>J</i> is current density and ρ is volume charge density.	[10]	CO4
	SECTION-C		
Q 10	a) Define capacitance and hence derive the formula for the capacitance of a coaxial cylindrical shape capacitor.	[10]	CO2
	b) Derive the expression for energy density per unit volume stored in an electrostatic electric field using a simple parallel plate capacitor.	[10]	CO2
Q 11	a) Using Ampere's circuit law, derive the expression for the magnetic field at point P, which is a distance R away from a long straight wire carrying a steady current I.	[10]	CO3
	b) Convert the following points to Cartesian coordinates: (i) $P_1(5, 120^\circ, 0)$, and (ii) $P_2(3, 30^\circ, 240^\circ)$.	[10]	CO3
	OR		
	a) Using Ampere's circuit law, derive the expression for the magnetic field at point P, which is at a distance R away from the centre of a circular coil of radius R carrying a steady current I.	[10]	CO3
	b) Convert point P (1, 3, 5) from cartesian to cylindrical and spherical coordinates.	[10]	CO3

Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018 gnetism (PHYS 1016) Semester: I

Course: Electricity and Magnetism (PHYS 1016)

Programme: BSc (H) Chemistry & Mathematics (Generic Elective)

Time: 03 hrs.

Max. Marks: 100

Instructions: Use suitable diagrams/illustrations whenever you think they will be required. All questions are compulsory. Question no 9 and 11 have internal choices. Bold face letters in the question are vector quantities.

SECTION A				
S. No.		Marks	CO	
Q 1	Using Gauss's Law, derive the expression of electric field intensity due to infinite line of charge having constant liner charge density (λ).	[4]	CO1	
Q 2	An infinite line of charge produces a field of 4.52×10^4 N/C at a distance of 1.96 m. Calculate the linear charge density of line charge.	[4]	CO3	
Q 3	Differentiate among the paramagnetic and diamagnetic substances.	[4]	CO1	
Q 4	A power line 10.0 m high carries a current 200 A. Find the magnetic field of the wire at the ground.	[4]	CO3	
Q 5	A pair of adjacent coils has a mutual inductance of 0.75 H. If the current in the primary changes from 0 to 10 A in 0.025 s, what is the average induced emf in the secondary coil?	[4]	CO2	
	SECTION B			
Q 6	Show that $\nabla \times f A = f (\nabla \times A) + (\nabla f \times A)$ where <i>f</i> is a scalar field and <i>A</i> is a vector field.	[10]	CO1	
Q 7	Find out the expression of electric field intensity outside solid sphere of charge.	[10]	CO2	
Q 8	Nucleus of an Fe atom has radius 4×10^{-15} m and contains 26 protons. What electric repulsive force act between them in such a way that they are separated by a distance of one radius. (charge on one proton= $+1.6 \times 10^{-19}$ C)	[10]	CO3	
Q 9	Write a note on Ferromagnetic Substances. Also describe its different types.	[10]	CO4	

	OR		
	Write down all four generalized Maxwell equations in their differential and integral form.	[10]	CO4
	SECTION-C		
Q 10	a) Define the significance of term capacitance. Derive the formula for the capacitance of a spherical shape capacitor.	[10]	CO2
	b) Define is an electric dipole. Derive the expression for electrical potentail at any point P due to an electic dipole.	[10]	CO2
Q 11	a) Using Ampere's circuit law, derive the expression for the magnetic field inside a solenoid of radius R carrying a steady current I.	[10]	CO3
	b) Convert point P(1, 3, 5) from cartesian to cylindrical and spherical coordinates.	[10]	CO3
	OR		
	a) Using Ampere's circuit law, derive the expression for the magnetic field at point P, which is at a distance R away from the centre of a circular coil of radius R carrying a steady current I.	[10]	CO3
	b) Convert the following points to Cartesian coordinates: (i) P_1 (5, 120°, 0), and (ii) P_2 (3, 30°, 240°).	[10]	CO3