

SECTION A			
S. No.		Marks	CO
Q 1	Using Gauss's Law, derive the expression of electric field intensity due to infinite sheet of charge having constant surface charge density (σ).	[4]	CO1
Q 2	A parallel plate capacitor has circular plates of 8.22 cm radius and 1.31 mm separation. (a) Calculate the capacitance. (b) What charge will appear on the plates if a potential difference of 116 V is applied?	[4]	CO 3
Q 3	State Biot-Savart's Law and Ampere's Circuit Law for a current carrying element and write down their merits and demerits.	[4]	CO1
Q 4	Find the value of the magnetic field that will cause a maximum force of $7.0 \times 10^{-3} \mathrm{~N}$ on a 20.0 cm straight wire carrying a current of 10.0 A .	[4]	CO3
Q 5	A square coil of side 16 cm has 200 turns and rotates in a uniform magnetic field of magnitude 0.05 T . If the peak emf is 12 V , what is the angular velocity of the coil?	[4]	CO 2
SECTION B			
Q 6	Show that $\nabla . f A=\nabla f . A+f(\nabla . A)$ where f is a scaler field and \boldsymbol{A} is a vector field.	[10]	CO1
Q 7	Derive the expression of electric field intensity inside uniformly charge solid sphere of radius R.	[10]	CO 2
Q 8	Magnitude of an average electric field normally present in the earth atmosphere just above the surface of the earth is $150 \mathrm{~N} / \mathrm{C}$ directed downward. What is the total net charge carried by the earth? Assume the earth to be a solid sphere conductor of radius $6.4 \times 10^{6} \mathrm{~m}$.	[10]	CO 3
Q 9	Define the terms self-inductance and mutual inductance and hence derive the	[10]	CO

	expression for the mutual-inductance of two coils of different radii R_{l} and R_{2}.		
	OR		
	State the Poynting's theorem (work-energy theorem for electrodynamics). Derive this expression $\left(\nabla . J=\frac{-\partial \rho}{\partial t}\right.$) of the continuity equation (based on conservation of charge). Where \boldsymbol{J} is current density and ρ is volume charge density.	[10]	CO4
SECTION-C			
Q 10	a) Define capacitance and hence derive the formula for the capacitance of a coaxial cylindrical shape capacitor.	[10]	CO 2
	b) Derive the expression for energy density per unit volume stored in an electrostatic electric field using a simple parallel plate capacitor.	[10]	CO 2
Q 11	a) Using Ampere's circuit law, derive the expression for the magnetic field at point P , which is a distance R away from a long straight wire carrying a steady current I .	[10]	CO 3
	b) Convert the following points to Cartesian coordinates: (i) $\mathrm{P}_{1}\left(5,120^{\circ}, 0\right)$, and (ii) $\mathrm{P}_{2}\left(3,30^{\circ}, 240^{\circ}\right)$.	[10]	CO 3
	OR		
	a) Using Ampere's circuit law, derive the expression for the magnetic field at point P , which is at a distance R away from the centre of a circular coil of radius R carrying a steady current I.	[10]	CO 3
	b) Convert point $\mathrm{P}(1,3,5)$ from cartesian to cylindrical and spherical coordinates.	[10]	CO3

Name: Enrolment No:			
SECTION A			
S. No.		Marks	CO
Q 1	Using Gauss's Law, derive the expression of electric field intensity due to infinite line of charge having constant liner charge density (λ).	[4]	CO1
Q 2	An infinite line of charge produces a field of $4.52 \times 10^{4} \mathrm{~N} / \mathrm{C}$ at a distance of 1.96 m . Calculate the linear charge density of line charge.	[4]	CO3
Q 3	Differentiate among the paramagnetic and diamagnetic substances.	[4]	CO1
Q 4	A power line 10.0 m high carries a current 200 A . Find the magnetic field of the wire at the ground.	[4]	CO3
Q 5	A pair of adjacent coils has a mutual inductance of 0.75 H . If the current in the primary changes from 0 to 10 A in 0.025 s , what is the average induced emf in the secondary coil?	[4]	CO2
SECTION B			
Q 6	Show that $\nabla \times f A=f(\nabla \times A)+(\nabla f \times A)$ where f is a scaler field and \boldsymbol{A} is a vector field.	[10]	CO1
Q 7	Find out the expression of electric field intensity outside solid sphere of charge.	[10]	CO 2
Q 8	Nucleus of an Fe atom has radius $4 \times 10^{-15} \mathrm{~m}$ and contains 26 protons. What electric repulsive force act between them in such a way that they are separated by a distance of one radius. (charge on one proton $=+1.6 \times 10^{-19} \mathrm{C}$)	[10]	CO3
Q 9	Write a note on Ferromagnetic Substances. Also describe its different types.	[10]	CO4

	OR			
	Write down all four generalized Maxwell equations in their differential and integral form.	$[10]$	CO4	
	SECTION-C	$[10]$	CO2	
Q 10	a) Define the significance of term capacitance. Derive the formula for the capacitance of a spherical shape capacitor.	$[10]$	$\mathbf{C O 2}$	
	b) Define is an electric dipole. Derive the expression for electrical potentail at any point P due to an electic dipole.	$[10]$	$\mathbf{C O 3}$	
Q 11	a) Using Ampere's circuit law, derive the expression for the magnetic field inside a solenoid of radius R carrying a steady current I.	$[10]$	$\mathbf{C O 3}$	
	b) Convert point P(1, 3, 5) from cartesian to cylindrical and spherical coordinates.	OR	$[10]$	$\mathbf{C O 3}$
	a) Using Ampere's circuit law, derive the expression for the magnetic field at point P, which is at a distance R away from the centre of a circular coil of radius R carrying a steady current I.	$[10]$	$\mathbf{C O 3}$	

