Name: Enrolmer	me: rolment No:				
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018					
Course N Course (,)18-19)	
Instructi	ions: Attempt all question from Sections A, B and C.				
	SECTION A (Attempt all questions)				
S. No.			Marks	CO	
Q1.	Find the polar representation of $z = -1 + i\sqrt{3}$ and determine its argument.	extended	[4]	CO1	
Q2.	Prove that the relation <i>R</i> on the set <i>Z</i> of all integers defined by $(x, y) \in R \Leftrightarrow x - y$ is divisible by <i>n</i> is an equivalence relation on <i>Z</i> .		[4]	CO2	
Q3.	Compute the following product using the polar representation of a number $(\frac{1}{2} - i\frac{\sqrt{3}}{2})(-3 + 3i)(2\sqrt{3} + 2i).$	complex	[4]	CO1	
Q4.	Let $A = R - \{2\}$ and $B = R - \{1\}$. If $f: A \to B$ is a mapping defined by $f(x) = \frac{x-1}{x-2}$ show that f is bijective.		[4]	CO2	
Q5.	Find the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ such that $T(-1, 1) = (-1, T(2, 1)) = (1, 2, 1)$.	0,2) and	[4]	CO5	
	SECTION B	I			
	(Q6-Q8 are compulsory and Q9-Q10 have internal choi	ice)			
Q6.	Find z and arg z for the following $z = \frac{(2\sqrt{3}+2i)^8}{(1-i)^6} + \frac{(1+i)^6}{(2\sqrt{3}-2i)^8}$		[8]	CO1	
Q7.	If $T: V_3(R) \to V_3(R)$ be a linear transformation defined by $T(a, b, c) = (3a, a - b, 2a + b + c)$ for all $a, b, c \in R$. Prove that <i>T</i> is invertible and find T^{-1} .		[8]	C05	

	Calculate i_1, i_2 and i_3 for the following system		
Q8.	$80 \text{ V} = \begin{bmatrix} 20 \ \Omega & Q & 10 \ \Omega \\ \hline i_1 & \hline i_2 \\ \hline p & 15 \ \Omega \end{bmatrix} = \begin{bmatrix} 0 \ 0 & 0 \\ 10 \ \Omega \\ \hline p & 15 \ \Omega \end{bmatrix} = \begin{bmatrix} 0 \ 0 & 0 \\ 0 \ 0 \\ \hline 0 & 0 \\ \hline 0 $	[8]	CO4
Q9.	Prove that the composition of functions is associative i.e. if f, g, h are three functions such that $(f \circ g) \circ h$ and $f \circ (g \circ h)$ exists, then $(f \circ g) \circ h = f \circ (g \circ h)$ OR Let $f: A \to B$ and $g: B \to A$ are two functions such that $g \circ f = I_A$ and $f \circ g = I_B$. Then f and g are bijections and $g = f^{-1}$.	[8]	CO3
Q10.	If the system of equations $x = cy + bz$, $y = az + cx$, $z = bx + ay$ have non- trivial solutions, prove that $a^2 + b^2 + c^2 + 2abc = 1$ and the solutions are $x: y: z = \sqrt{1 - a^2}: \sqrt{1 - b^2}: \sqrt{1 - c^2}.$ OR If $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, show that for every integer $n \ge 3$, $A^n = A^{n-2} + A^2 - I$.	[8]	CO4
	SECTION-C (Q11 is compulsory and Q12(A) and Q12(B) have internal choice)		
Q11 (A).	Solve the following simultaneous linear congruences: $x \equiv 1 \pmod{3}, x \equiv 2 \pmod{4}, x \equiv 3 \pmod{5}.$	[10]	CO2
Q11 (B).	By using the Euclidean algorithm, find the greatest common divisor d of the numbers 1109 and 4999 and then find the integers x and y to satisfy $d = 1109x + 4999y$.	[10]	CO2

	State and prove Cayley Hamilton Theorem.		
Q12 (A).	OR Let $T: V \to W$ be a linear transformation and V be a finite dimensional vector space. Then show that Rank $(T) + Nullity (T) = dimension V.$	[10]	CO3
Q12 (B).	Define the algebraic and geometric multiplicities of a matrix. Find the eigenvalues and eigenvectors of the matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ and hence specify their multiplicities. OR Investigate for what values of λ and μ the equations x+2y+z=8 2x+2y+2z=13 $3x+4y+\lambda z = \mu$ have (i) no solution, (ii) unique solution and (iii) many solutions. Also find the solutions in case of (ii) and (iii).	[10]	CO4

Name:		2	
Enrolmer	nt No:	>	
	UNIVERSITY OF PETROLEUM AND ENERGY End Semester Examination, December 2018	STUDIES	
Program Course N Course C Nos. of p	Imme Name : B.Sc. (Hons.) MathematicsSemestName : AlgebraTimeCode : MATH 1032Max. Max. Max. Max. Max. Max. Max. Max.	Semester : I (ODD-2018-19	
Instructi	ons: Attempt all question from Sections A, B and C.		
	SECTION A (Attempt all questions)		
S. No.		Marks	CO
Q1.	Find the cube root of the following complex number $z = \frac{1}{2} - i \frac{\sqrt{3}}{2}$	[4]	CO1
Q2.	Show that the relation R on the set $A = x \in Z: 0 \le x \le 12$ } given by $R = \{(a, b): a - b \text{ is a multiple of } 4\}$ is an equivalence relation.	[4]	CO2
Q3.	Find the polar representation of $z = 2 + 2i$ and determine its extended argu	[4]	CO1
Q4.	Show that the function $f: R - \{3\} \rightarrow R - \{1\}$ given by $f(x) = \frac{x-2}{x-3}$ is a bije	ection. [4]	CO2
Q5.	Find the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that $T(1,2) = (3, T(2,1) = (1,2).$	0) and [4]	CO5
	SECTION B (Q6-Q8 are compulsory and Q9-Q10 have internal choice	:)	
Q6.	Find z and arg z for the following $z = \frac{(-1+i)^4}{(\sqrt{3}-i)^{10}} + \frac{1}{(2\sqrt{3}+2i)^4}$	[8]	CO1
Q7.	If $T: V_3(R) \to V_3(R)$ be a linear transformation defined by $T(a, b, c) = (3a, a - b, 2a + b + c)$ for all $a, b, c \in R$. Prove that <i>T</i> is invertible and find T^{-1} .	[8]	CO5
Q8.	The manufacturing of an automobile requires painting, drying and polishing Rome Motor Company produces three types of cars: the Centurion, the 7 and the Senator. Each Centurion requires 8 hours for painting, 2 hours for and 1 hour for polishing. A Tribune needs 10 hours for painting, 3 hours of and 2 hours for polishing. It takes 16 hours of painting, 5 hours of drying hours of polishing to prepare a Senator. If the company uses 240 hours painting, 69 hours for drying and 41 hours for polishing in a given mon	Tribune,r dryingf dryingg and 3purs for	CO4

	many of each type of cars are produced?		
Q9.	If $f: A \to B$ and $g: B \to A$ are two bijections, then show that $gof: A \to C$ is a bijection and $(gof)^{-1} = f^{-1}og^{-1}$. OR If $f: A \to B$ and $g: B \to A$ be two functions such that $gof = I_A$. Then show that f is an injection and g is a surjection.	[8]	CO3
Q10.	If the system of equations $x = cy + bz$, $y = az + cx$, $z = bx + ay$ have non- trivial solutions, prove that $a^2 + b^2 + c^2 + 2abc = 1$ and the solutions are $x: y: z = \sqrt{1 - a^2}: \sqrt{1 - b^2}: \sqrt{1 - c^2}.$ OR If $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, show that for every integer $n \ge 3$, $A^n = A^{n-2} + A^2 - I$.	[8]	CO4
	SECTION-C		
Q11 (A).	(Q11 is compulsory and Q12(A) and Q12(B) have internal choice) For the following pair of integers a and b , find the integers q and r such that $a = bq + r$ and $0 \le r < b$ a = -278, b = 12.	[10]	CO2
Q11 (B).	Solve the following simultaneous linear congruences: $x \equiv 2 \pmod{3}, x \equiv 3 \pmod{7}, x \equiv 4 \pmod{8}.$	[10]	CO2
Q12 (A).	Let $T: V \rightarrow W$ be a linear transformation and V be a finite dimensional vector space. Then show that Rank(T) + Nullity(T) = dimension V. OR Show that the characteristic roots of a unitary matrix are of unit modulus.	[10]	CO3
Q12 (B).	Define the characteristic equation and find the same for the matrix $A = \begin{bmatrix} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{bmatrix}.$ Show that this matrix has less than three linearly independent eigen vectors. Also find them.	[10]	CO4

OR	
Show that the matrix $A = \begin{bmatrix} 4 & 3 & 1 \\ 2 & 1 & -2 \\ 1 & 2 & 1 \end{bmatrix}$ satisfies its own characteristic equation and hence find A^{-1} .	