

Q8.	Calculate i_{1}, i_{2} and i_{3} for the following system	[8]	CO4
Q9.	Prove that the composition of functions is associative i.e. if f, g, h are three functions such that (fog)oh and $f o(g o h)$ exists, then $(f o g) o h=f o(g o h)$ OR Let $f: A \rightarrow B$ and $g: B \rightarrow A$ are two functions such that $g o f=I_{A}$ and $f o g=I_{B}$. Then f and g are bijections and $g=f^{-1}$.	[8]	CO 3
Q10.	If the system of equations $x=c y+b z, y=a z+c x, z=b x+a y$ have nontrivial solutions, prove that $a^{2}+b^{2}+c^{2}+2 a b c=1$ and the solutions are $x: y: z=\sqrt{1-a^{2}}: \sqrt{1-b^{2}}: \sqrt{1-c^{2}}$. OR If $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$, show that for every integer $n \geq 3, A^{n}=A^{n-2}+A^{2}-I$.	[8]	CO4
	SECTION-C (Q11 is compulsory and Q12(A) and Q12(B) have internal choice)		
Q11 (A).	Solve the following simultaneous linear congruences: $x \equiv 1(\bmod 3), x \equiv 2(\bmod 4), x \equiv 3(\bmod 5)$	[10]	$\mathrm{CO2}$
Q11 (B).	By using the Euclidean algorithm, find the greatest common divisor d of the numbers 1109 and 4999 and then find the integers x and y to satisfy $d=1109 x+$ 4999y.	[10]	CO 2

Q12 (A).	State and prove Cayley Hamilton Theorem. OR Let $\quad T: V \rightarrow W$ be a linear transformation and V be a finite dimensional vector space. Then show that $\operatorname{Rank}(T)+\operatorname{Nullity}(T)=\text { dimension } V .$	[10]	CO3
Q12 (B).	Define the algebraic and geometric multiplicities of a matrix. Find the eigenvalues and eigenvectors of the matrix $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$ and hence specify their multiplicities. OR Investigate for what values of λ and μ the equations $\begin{aligned} x+2 y+z & =8 \\ 2 x+2 y+2 z & =13 \\ 3 x+4 y+\lambda z & =\mu \end{aligned}$ have (i) no solution, (ii) unique solution and (iii) many solutions. Also find the solutions in case of (ii) and (iii).	[10]	CO4

Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018			
Programme Name : B.Sc. (Hons.) Mathematics Semester : I (ODD-2018-19) Course Name : Algebra Time $: 03 \mathrm{hrs}$ Course Code $\quad:$ MATH 1032 Max. Marks :100 Nos. of page(s) $: 03$ Instructions: Attempt all question from Sections A, B and C.			
SECTION A (Attempt all questions)			
S. No.		Marks	CO
Q1.	Find the cube root of the following complex number $z=\frac{1}{2}-i \frac{\sqrt{3}}{2}$	[4]	CO1
Q2.	Show that the relation R on the set $A=x \in Z: 0 \leq x \leq 12\}$ given by $R=\{(a, b):\|\mathrm{a}-\mathrm{b}\|$ is a multiple of 4$\}$ is an equivalence relation.	[4]	CO2
Q3.	Find the polar representation of $z=2+2 i$ and determine its extended argument.	[4]	$\mathrm{CO1}$
Q4.	Show that the function $f: R-\{3\} \rightarrow R-\{1\}$ given by $f(x)=\frac{x-2}{x-3}$ is a bijection.	[4]	CO 2
Q5.	Find the linear transformation $T: R^{2} \rightarrow R^{2}$ such that $T(1,2)=(3,0)$ and $T(2,1)=(1,2)$.	[4]	$\mathrm{CO5}$
SECTION B(Q6-Q8 are compulsory and Q9-Q10 have internal choice)			
Q6.	Find $\|z\|$ and $\arg z$ for the following $z=\frac{(-1+i)^{4}}{(\sqrt{3}-i)^{10}}+\frac{1}{(2 \sqrt{3}+2 i)^{4}}$	[8]	CO1
Q7.	If $T: V_{3}(R) \rightarrow V_{3}(R)$ be a linear transformation defined by $T(a, b, c)=(3 a, a-b, 2 a+b+c)$ for all $a, b, c \in R$. Prove that T is invertible and find T^{-1}.	[8]	CO5
Q8.	The manufacturing of an automobile requires painting, drying and polishing. The Rome Motor Company produces three types of cars: the Centurion, the Tribune, and the Senator. Each Centurion requires 8 hours for painting, 2 hours for drying and 1 hour for polishing. A Tribune needs 10 hours for painting, 3 hours of drying and 2 hours for polishing. It takes 16 hours of painting, 5 hours of drying and 3 hours of polishing to prepare a Senator. If the company uses 240 hours for painting, 69 hours for drying and 41 hours for polishing in a given month, how	[8]	CO4

	many of each type of cars are produced?		
Q9.	If $f: A \rightarrow B$ and $g: B \rightarrow A$ are two bijections, then show that $g o f: A \rightarrow C$ is a bijection and $(g \circ f)^{-1}=f^{-1} \mathrm{og}^{-1}$ OR If $f: A \rightarrow B$ and $g: B \rightarrow A$ be two functions such that $g \circ f=I_{A}$. Then show that f is an injection and g is a surjection.	[8]	C03
Q10.	If the system of equations $x=c y+b z, y=a z+c x, z=b x+a y$ have nontrivial solutions, prove that $a^{2}+b^{2}+c^{2}+2 a b c=1$ and the solutions are $x: y: z=\sqrt{1-a^{2}}: \sqrt{1-b^{2}}: \sqrt{1-c^{2}}$ OR If $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$, show that for every integer $n \geq 3, A^{n}=A^{n-2}+A^{2}-I$.	[8]	CO4
SECTION-C(Q11 is compulsory and Q12(A) and Q12(B) have internal choice)			
Q11 (A).	For the following pair of integers a and b, find the integers q and r such that $\begin{gathered} a=b q+r \text { and } 0 \leq r<b \\ a=-278, b=12 . \end{gathered}$	[10]	CO2
Q11 (B).	Solve the following simultaneous linear congruences: $x \equiv 2(\bmod 3), x \equiv 3(\bmod 7), x \equiv 4(\bmod 8) .$	[10]	CO2
Q12 (A).	Let $T: V \rightarrow W$ be a linear transformation and V be a finite dimensional vector space. Then show that $\operatorname{Rank}(T)+\operatorname{Nullity}(T)=$ dimension V. OR Show that the characteristic roots of a unitary matrix are of unit modulus.	[10]	CO3
Q12 (B).	Define the characteristic equation and find the same for the matrix $A=\left[\begin{array}{rcc} 3 & 10 & 5 \\ -2 & -3 & -4 \\ 3 & 5 & 7 \end{array}\right]$ Show that this matrix has less than three linearly independent eigen vectors. Also find them.	[10]	$\mathrm{CO4}$

| | OR | | |
| :--- | :--- | :--- | :--- | :--- |
| Show that the matrix $A=\left[\begin{array}{ccc}4 & 3 & 1 \\ 2 & 1 & -2 \\ 1 & 2 & 1\end{array}\right]$ satisfies its own characteristic equation and | | | |
| hence find A^{-1}. | | | |

