Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Course: Thermodynamics & Heat Engines Semester: III

Programme: B.Tech GSE/GIE/APE Up

Time: 03 hrs.

Max. Marks: 100

Instructions: Answer all the questions of a section at a place. Assume the missing data reasonably

Instructions: Answer all the questions of a section at a place. Assume the missing data reasonably. SECTION A $(4 \times 5 = 20 \text{ Marks})$				
Q 1	What is free expansion? Justify the fact that free expansion is associated with zero work transfer.	5	CO1	
Q 2	Prove that two reversible adiabatic paths cannot intersect each other.	5	CO3	
Q 3	Draw phase equilibrium diagram on h-s and T-s coordinates, along with isobars.	5	CO4	
Q 4	Describe Rankine cycle in detail with plots on T-s and P-v coordinate axes.	5	CO5	
Q 5	SECTION B (4 x 10 = 40 Marks) A system of volume V contains a mass m of gas at pressure p and temperature T. The			
~~	macroscopic properties of the system obey the following relationship. $ \left(p + \frac{a}{V^2}\right)(V - b) = mRT, \text{ where a, b and R are constants.} $ Obtain an expression for the displacement work done by the system during an isothermal expansion from volume V_1 to V_2 . Calculate the work done by a system which contains 10 kg of this gas expanding from 1 m³ to 10 m³ at a temperature of 293 K. Use the values $a = 157 \text{ Nm}^4$, $b = 0.0107 \text{ m}^3$ and $R = 0.278 \text{ kJ/kg-K}$.	10	CO1	
Q 6	In a gas turbine, an ideal gas enters at the rate of 5 kg/s with a velocity of 50 m/s and enthalpy of 900 kJ/kg and leaves the turbine with a velocity of 150 m/s and enthalpy of 400 kJ/kg. The loss of heat from the gas to the surroundings is 25 kJ/kg. Assume for the gas, $R = 0.285$ kJ/kg-K and $c_p = 1.004$ kJ/kg-K and the inlet conditions to be at 100 kPa and 27°C. Determine the power output of the turbine and the diameter of the inlet pipe.	10	CO2	
Q 7	A heat engine operating between two reservoirs at 1000 K and 300 K is used to drive a heat pump which extracts heat from the reservoir at 300 K at a rate twice that at which the engine rejects heat to it. If the efficiency of the engine is 40% of the maximum possible and the COP of the heat pump is 50% of the maximum possible, what is the temperature of the reservoir to which the heat pump rejects heat? What is the rate of	10	CO2	

	heat rejection from the heat pump if the rate of heat supply to the engine is 50 kW?		
Q 8	Derive an expression for the maximum work obtainable from a finite body (of heat capacity Cp and at a temperature 'T') and a thermal energy reservoir at a temperature T_0 . Or A fluid undergoes a reversible adiabatic compression from 0.5 MPa, 0.2 m³ to 0.05 m³ according to the law, $pv^{1.3} = constant$, Determine the change in enthalpy, internal energy and entropy and the heat transfer and work transfer during the process.	10	CO3
	SECTION-C (2 x $20 = 40$ Marks)		
Q 9	1 kg of steam in a closed system undergoes a thermodynamic cycle composed of the following reversible processes. 1 → 2: The steam initially at 10 bar and 40% quality is heated at constant volume until the pressure rises to 35 bar. 2 → 3: It is then expanded isothermally to 10 bar. 3 → 1: It is finally cooled at constant pressure back to its initial state. Sketch the cycle on T-s coordinates, calculate the work done, heat transferred and the change of entropy for each of the three processes. What is the thermal efficiency of the cycle.	20	CO4
Q 10	(i) Explain the Diesel cycle, in detail, with the help of an indicator diagram. [10M] (ii) Derive an expression for the efficiency of Diesel cycle, clearly indicating all the terms used. [10M] Or An engine working on the Otto cycle has an air standard cycle efficiency of 56% and rejects 544 kJ/kg of air. The pressure and temperature of air at the beginning of compression are 0.1 MPa and 60°C respectively. Compute (a) the compression ratio of the engine (b) the work done per kg of air (c) the pressure and temperature at all the cardinal points of the cycle.	20	CO5