Name: **Enrolment No:** ## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES **End Semester Examination, December 2018** **Course: Inorganic Chemistry-I (CHEM-1003)** Semester: I Program: B. Sc.(H)-Chemistry Time: 03 hrs. Max. Marks: 100 Instructions: Read all the below mentioned instructions carefully and follow them strictly - 1) Write your Enrolment No. at the top left of the question paper - 2) Do not write anything else on the question paper except your roll number - 3) Attempt all the parts of a question at one place only - 4) Internal choice are given for question numbers 9, 10 & 12 | SECTION A 5 x 4 | | x 4 = 20 M | 4 = 20 Marks | | |-----------------|---|------------|--------------|--| | S. No. | All questions are compulsory | Marks | CO | | | Q 1 | State metallic bonding in metals using Drude and Lorentz concept. | 4 | CO3 | | | Q 2 | Draw Lewis structures for the following molecules and predict the molecular geometry: i. BCl ₃ ii. XeO ₄ | 4 | CO3 | | | Q 3 | i. BCl₃ ii. XeO₄ Calculate formal charges of N, O atoms in the following molecules: i) H ii) H ₃ C—C iii) iii) iii) iiii) iiii | 4 | CO3 | | | Q 4 | Differentiate between Electronegativity and Electron affinity. | 4 | CO2 | | | Q 5 | Give four possible quantum numbers for a 5f electron of the hydrogen atom. | 4 | CO1 | | | | SECTION B Attempt all FIVE questions (Q 9 & 10 have internal choice) | x = 40 N | larks | | | Q 6 | Write postulates of VSEPR theory and mention its limitations. | 8 | CO3 | | | Q 7 | a) Calculate the p character in the bonds of NH₃ (bond angle is 107.5°) using Bent's equation to what is the p character of the lone pair? Given Cos (107.5°)= 0.7738 b) How many radial nodes do 3s, 4p, 3d and 5f orbitals exhibit? | 4+4 | CO3 | | | Q 8 | Which quantum numbers reveal information about the shape, energy, orientation, and size of orbitals? Explain | 8 | CO1 | | | Q 9 | Describe Allred-Rochow's scale of electronegativity with an example. OR Give brief description about Modern periodic table. | 8 | CO2 | | | Q 10 | Explain why He ₂ molecule does not exists and draw MOT energy profile diagram for | 8 | CO3 | | | | B_2 molecule. | | | |------|--|----------------------------|-------------------| | | OR | | | | | Explain the MOT energy profile diagrams for Li ₂ and NO molecules. SECTION-C 2: | $\frac{1}{\times 20 = 40}$ | Maulta | | | Attempt TWO questions (Q 12 has internal choice) | X 20 — 40 | Marks | | Q 11 | a) Estimate the lattice energy of NaCl using Born-Lande equation Where, Avogadro constant = 6.022×10²³/mol Madelung constant for the lattice = 1.74756 Elementary charge = 1.6022×10⁻¹⁹C Permittivity of free space = 8.854×10⁻¹²C²/m Distance to closest ion = 282×10⁻¹² m 'n' for NaCl molecule is 9.1 b) Describe hydrogen bonding on basis of valence bond treatment. c) From the postulates of Bohr derive expression for radius of an atom? d) Determine the v for the transition wherein n₁=6 to n₂ = 3 in an hydrogen atom? | 5+5
+ 6+4 | CO3
CO1
CO1 | | Q 12 | a) Define polarizing power. What are the consequences of polarization in covalent character? b) Explain the defects in solids. c) Using Slater's rule calculate Z* for the following electrons a) 3p electron in P b) 3d electron in Mn OR a) Describe Fajan's rules. b) Explain the types of weak chemical forces. c) Draw the angular wave functions of s, p, d and f orbitals by illustrating gerade and ungerade symmetry. | 5+5
+10 | CO3
CO3
CO2 | Name: **Enrolment No:** ## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES **End Semester Examination, December 2018** Course: Inorganic Chemistry-I (CHEM-1003) Semester: I Program: B. Sc.(H)-Chemistry Time: 03 hrs. Max. Marks: 100 Instructions: Read all the below mentioned instructions carefully and follow them strictly - 1) Write your Enrolment No. at the top left of the question paper - 2) Do not write anything else on the question paper except your roll number - 3) Attempt all the parts of a question at one place only - 4) Internal choice are given for question numbers 9, 10 & 12 | | SECTION A 5 x | 4 = 20 M | arks | |--------|---|-----------|-------| | S. No. | All questions are compulsory | Marks | CO | | Q 1 | Give four quantum numbers for each electron in Ti. | 4 | CO1 | | Q 2 | Draw Lewis structures for the following molecules and predict the molecular geometry. Including expected distortions: i. ICl ₂ ⁺ ii. XeF ₄ | 4 | CO3 | | Q 3 | Calculate formal charges of C and N atoms in the following molecules: H ₃ C - CH ₂ - CH ₃ CH ₃ CH ₃ | 4 | CO3 | | Q 4 | Write a short note on free electron theory. | 4 | CO3 | | Q 5 | Which has higher 1 st ionization energy? i. Li or Cs? ii. Sc or Cu? | 4 | CO2 | | | SECTION B Attempt all FIVE questions (Q 9 & 10 have internal choice) | 8 = 40 M | larks | | Q 6 | Deduce structures of NH ₃ , PH ₃ , PF ₃ , H ₂ O, H ₂ S, F ₂ O molecules according to VSEPR theory and explain hybridization for the same. | 8 | CO3 | | Q 7 | Plot Radial probability functions graphs for n=1, 2, 3 for Hydrogen atom. | 8 | CO1 | | Q 8 | Describe Pauling's scale of electronegativity with an example. | 8 | CO2 | | Q 9 | From the postulates of Bohr, derive expression for radius of an atom. OR Write the postulates of Bohr's model for hydrogen atom. | 8 | CO1 | |------|--|-------------|-------------------| | Q 10 | Explain LCAO concept and draw the MOT energy profile diagram for SF ₆ . OR Write main features of valence bond theory and explain the structures of C ₂ H ₆ molecule. | 8 | CO3 | | | SECTION-C 2 x 2 | 20 = 40 | Marks | | | Attempt TWO questions (Q 12 has internal choice) | | | | Q 11 | a) Estimate the ionic radius of Cs⁺ using Born-Lande equation Where, Avogadro constant = 6.022×10²³/mol Madelung constant for the lattice = 1.76267 Elementary charge = 1.6022×10⁻¹⁹C Permittivity of free space = 8.854×10⁻¹²C²/m the ionic radius of Cl⁻ = 1.81 °A Lattice energy of CsCl = 633 KJ/mol 'n' for CsCl molecule is 10.7 b) Explain the types of semiconductors. c) Explain, Pauli's exclusion principle and Hund's rule used to specify electronic configuration of elements F, Mg, P and Ca. | 5+ 5
+10 | CO3
CO3
CO2 | | Q 12 | a) Write Bent's rule and calculate the % s and % p character for CH₂F₂ and NH₃ b) Explain the hydrogen bonding and weak chemical forces. c) Write the Slaters Rules for calculating shielding constant. Calculate affective nuclear charge of 4s electron of Cu. OR a) What are the physical properties of metallic bond and explain any two with examples? b) Describe the defects in metallic solids. c) How electronegativity and electron affinity does varies in a period and group? Mention the reason. | 5+5
+10 | CO3
CO3
CO2 |