

	OR Find the volume formed by the revolution of the loop of the curve $y^{2}(a+x)=x^{2}(3 a-x)$, about the x -axis.		
	SECTION C (Q10 is compulsory and Q11 has internal choice)		
10.A	Find the coordinate of focus and vertex of given conic section $9 x^{2}-24 x y+16 y^{2}-18 x-101 y+19=0$.	[10]	CO3
10.B	Given $\vec{r}=t^{m} A+t^{n} B$, where A, B are constant vectors, show that, if \vec{r} and $d^{2} r / d t^{2}$ are parallel vectors, then $m+n=1$, unless $m=n$.	[10]	CO4
11.A	Trace the conic $5 x^{2}+4 x y+8 y^{2}-12 x-12 y=0$. OR Show that the locus of the pole of given straight line with respect to a series of confocal conics is a straight line.	[10]	CO 3
11.B	Given $R(t)=3 t^{2} \hat{i}+t \hat{j}-t^{3} \hat{k}$, evaluate $\int_{0}^{1}\left(R x^{d^{2} R} / d t^{2}\right) d t$. OR If $F=3 x y \hat{i}-y^{2} \hat{j}$, evaluate $\int_{C}^{\int F . d r}$, where C is the curve in the $x y_{\text {- plane }} y=2 x^{2}$ from $(0,0)$ to $(1,2)$.	[10]	CO4

Name:			
Enrolment No:	UPES		

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES

End Semester Examination, December 2018

Course: MATH 1030 Calculus
Programme: B. Sc. (H) Mathematics
Time: 03 hrs.

Semester: I

Max. Marks: 100

Instructions:

Attempt all questions from Section \mathbf{A} (each carrying 4 marks); attempt all questions from Section \mathbf{B} (each carrying 10 marks); attempt all questions from Section C (each carrying 20 marks).

Section A
(Attempt all questions)

1.	If $y=\sin (\sin x)$, prove that $y_{2}+\tan x y_{1}+y \cos ^{2} x=0$.	$[4]$	$\mathbf{C O 1}$		
2.	Evaluate $\int \cos ^{4} x d x$	$[4]$	$\mathbf{C O 2}$		
3.	Find the eccentricity of the given conic section $34 x^{2}-24 x y+16 y^{2}+92 x-56 y+34=0$.	$[4]$	$\mathbf{C O 3}$		
4.	Find the coordinate of the centre of the conic $22 x^{2}+48 x y+18 y^{2}-260 a x-120 a y+232 a^{2}=0$.	$[4]$	$\mathbf{C O 3}$		
5.	Show that the points $-6 \hat{i}+3 \hat{j}+2 \hat{k}, 3 \hat{i}-2 \hat{j}+4 \hat{k}, 5 \hat{i}+7 \hat{j}+3 \hat{k}$ coplanar.	and $-13 \hat{i}+17 \hat{j}-\hat{k}$ are	$[4]$	$\mathbf{\mathbf { C O 4 }}$	
:---					

SECTION B
(Q6-Q8 are compulsory and Q9 has internal choice)

6.	If $_{n}=\frac{d^{n}}{d x^{n}}\left(x^{n} \log x\right)$, show that $V_{n}=n V_{n-1}+n-1!$.	$[10]$	$\mathbf{C O 1}$
7.	$\lim _{x \rightarrow 0} \frac{(1+x)^{x}-e}{x}$ Evaluate	$[10]$	$\mathbf{C O 1}$
8.	Find the area common to the parabola $y^{2}=a x$ and the circle $x^{2}+y^{2}=4 a x$.	$[10]$	$\mathbf{C O 2}$
9.	Find the length of the arc of the parabola extremity of the latus-rectum.	$x^{2}=4 a y$ measured from the vertex to one	$[10]$
$\mathbf{C O 2}$			

	Find the volume of a sphere of radius a.		
SECTION C (Q10 is compulsory and Q11 has internal choice)			
10.A	Find the coordinate of focus and vertex of given conic section $x^{2}-4 x y+4 y^{2}-12 x-6 y-39=0$.	[10]	CO3
10.B	If $R(t)=\left\{\begin{array}{ll}2 i-j+2 k & \text { when } t=1 \\ 3 i-2 j+4 k & \text { when } t=2\end{array}\right.$, show that $\int_{\mathrm{i}}^{2}\left(R \cdot \frac{d R}{d t}\right) d t=10$	[10]	CO4
11.A	Trace the conic $5 x^{2}+4 x y+8 y^{2}-12 x-12 y=0$. OR Show that the locus of the pole of given straight line with respect to a series of confocal conics is a straight line.	[10]	CO 3
11.B	Given $R(t)=\left(5 t^{2}-3 t\right) \hat{i}+6 t^{3} \hat{j}-7 t \hat{k}$, evaluate $\int_{2}^{4}(F(t)) d t$. OR A vector field is given by $F=\sin y \hat{i}+x(1+\cos y) \hat{j}$, evaluate the line integral over a circular path given by $x^{2}+y^{2}=a^{2}, z=0$.	[10]	CO4

