Name: Enrolment No:			
Course: Mathematical Physics-I (PHYS 1011) Semester: I Programme: BSc Physics (H) Time: $\mathbf{0 3}$ hrs. Max. Marks: 100 Number of pages: 03 Instructions:			
SECTION A All questions are compulsory.			
SN	Statement of Question	Marks	CO
Q1	Define scalar and vector fields. Plot the following vector field (no need of graph paper): $\vec{A}(x, y)=-2 x \hat{\imath}+y \hat{\jmath}$	4	CO3
Q2	What do you mean by directional derivative of a scalar field? Estimate the directional derivative of the following scalar function at ($1,-2,-1$). $\varphi=x^{2} y z+4 x z^{2}$	4	CO3
Q3	Define Dirac Delta function and state its properties.	4	CO 2
Q4	Prove that the vector field $\vec{F}=\left(y^{2}-z^{2}+3 y z-2 x\right) \hat{\imath}+(3 x z+2 x y) \hat{\jmath}+(3 x y-$ $2 x z+2 z) \hat{k}$ is solenoidal.	4	CO3
Q5	Using Lagrange Multiplier's method, compute the maxima and minima of the function $f(x, y, z)=x^{2}-y^{2}$ On the surface $x^{2}+2 y^{2}+3 z^{2}=1$	4	CO2
SECTION BQuestions 6-8 are compulsory. There is internal choice for question number 9.			
Q6	Using Wronskian's method of variation of parameters, find the complete solution of the following differential equation: $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=e^{x} \log x$	10	CO2
Q7	If \vec{A} is a vector field given as $\vec{A}=A_{x} \hat{\imath}+A_{y} \hat{\jmath}+A_{z} \hat{k}$ then prove $\vec{\nabla} \times(\vec{\nabla} \times \vec{A})=-\nabla^{2} \vec{A}+\vec{\nabla}(\vec{\nabla} \cdot \vec{A})$ where $\vec{\nabla}$ and ∇^{2} are DEL and Laplacian operators, respectively.	10	CO3
Q8	Prove if the following differential equation $\left(2 x y+y-\tan y d x+\left(x^{2}-x \tan ^{2} y+\sec ^{2} y\right) d y\right)=0$ is exact. Find the solution of the differential equation.	10	CO1
Q9	State Gauss's Divergence theorem for a vector field. Using Gauss's divergence theorem, evaluate	10	CO4

	$\iint \vec{F} \cdot \hat{n} d s$ on a surface S of the cube bounded by $x=0, x=1, y=0, y=1, z=0, z=1$. The vector field is given as $\vec{F}=4 x z \hat{\imath}-y^{2} \hat{\jmath}+y z \hat{k}$ and \hat{n} is the unit vector normal to the surface S. OR		
Q9	State Stoke's theorem for a vector field. Evaluate $\oint \vec{F} \cdot \overrightarrow{d r}$ on a closed surface C in the $x y$ plane, $x=2 \cos t, y=3 \sin t$ from $t=0$ to $t=2 \pi$. The vector field \vec{F} is given as $\vec{F}=(x-3 y) \hat{\imath}+(y-2 x) \hat{\jmath}$ [Note: No need to use Stoke's theorem for evaluating $\oint \vec{F} \cdot \overrightarrow{d r}$. Evaluate it as a line integral]	10	CO4
	SECTION-C Q10 is compulsory. There is an internal choice for Q11.		
Q10	a) If $\vec{R}(x)=\left(x-x^{2}\right) \hat{\imath}+2 x^{3} \hat{\jmath}-3 \hat{k}$ then calculate $\int_{1}^{2} \vec{R}(x) d x$ b) When do we call a vector irrotational? Find constants a, b, c so that the vector $\vec{V}=(x+2 y+a z) \hat{\imath}+(b x-3 y-z) \hat{\jmath}+(4 x+c y+2 z) \hat{k}$ is irrotational. c) The differential equation corresponding to the rate of change of current with time in a circuit containing an inductance L and a resistance R in series acted on by an electromotive force $E \sin \omega t$ is $i R+L \frac{d i}{d t}=E \sin \omega t$ Find the value of current at any time t, if initially there is no current in the circuit. Draw the current Vs phase (ωt) graph and comment on its behavior.	5+5+10	$\begin{gathered} \mathrm{CO4+} \\ \mathrm{CO}+ \\ \mathrm{CO} \end{gathered}$
Q11	a) Find the area of a triangle with vertices at $(3,-1,2),(1,-1,-3)$ and $(4,-3,1)$. b) The temperature of points in the space is given by $T(x, y, z)=x^{2}+y^{2}-z$ A mosquito located at $(1,1,2)$ desires to fly in such a direction that it will get warm as soon as possible. In what direction should it move? c) Evaluate $\int \vec{F} \cdot \overrightarrow{d S}$ where $\vec{F}=4 x \hat{\imath}-2 y^{2} \hat{\jmath}+z^{2} \hat{k}$ and S is the surface bounding the region $x^{2}+y^{2}=4, z=0$ and $z=3$ (see the figure below).	5+5+10	$\begin{gathered} \mathrm{CO}+ \\ \mathrm{CO}+ \\ \mathrm{CO}+ \end{gathered}$

	OR		
Q11	a) Find the divergence and curl of $\vec{v}=(x y z) \hat{\imath}+\left(3 x^{2} y\right) \hat{\jmath}+\left(x z^{2}-y^{2} z\right) \hat{k}$ b) Find the volume of parallelepiped if $\vec{a}=-3 \hat{\imath}+7 \hat{\jmath}+5 \hat{k}, \vec{b}=-3 \hat{\imath}+7 \hat{\jmath}-$ $3 \hat{k}, \vec{c}=7 \hat{\imath}-5 \hat{\jmath}-3 \hat{k}$ are the co-terminus (originating from the same vertex) edges of the parallelepiped. c) Find the work done in moving a particle in the force field $\vec{F}=3 x^{2} \hat{\imath}+$ $(2 x z-y) \hat{\jmath}+z \hat{k}$ along I. Straight line from $(0,0,0)$ to $(2,1,3)$ II. The curve defined by $x^{2}=4 y, 3 x^{3}=8 z$ from $x=0$ to $x=2$.	5+5+10	$\begin{gathered} \mathrm{CO} 3+ \\ \mathrm{CO}+ \\ \mathrm{CO} 4 \end{gathered}$

Set-II

Name: Enrolment No:			
Course: Mathematical Physics-I (PHYS 1011) Semester: I Programme: BSc Physics (H) Time: 03 hrs. Max. Marks: 100 Number of pages: 03 Instructions:			
SECTION A All questions are compulsory.			
SN	Statement of Question	Marks	CO
Q1	Define partial derivative of a function $f(x, y)=c$ w.r.t x with the help of limits. If the function is given as $f(x, y)=\tan ^{-1}(y / x)$ calculate $\frac{\partial^{2} f}{\partial x^{2}}$ and prove that $\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}$.	4	CO2
Q2	Write the statement of Gauss's Divergence theorem and explain its physical meaning.	4	CO4
Q3	What are the necessary and sufficient conditions for the differential equation $M(x, y) d x+N(x, y) d y=0$ to be exact? Prove if the following differential equation is exact: $\left(y e^{x}+2 x y^{2}\right) d x-e^{x} d y=0$	4	CO1
Q4	Using Lagrange Multiplier's method, estimate the maxima of the function $f(x, y, z)=x y$ On the surface $3 x^{2}+y^{2}=6$	4	CO2
Q5	Find the general solution of $\frac{d^{2} x}{d t^{2}}+5 \frac{d x}{d t}+6 x=0$.	4	CO1
SECTION B Questions 6-8 are compulsory. There is an internal choice for Q9			
Q6	Using the method of variation of parameters, find out the complete solution of the following differential equation $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=\frac{1}{1+e^{-x}}$	10	CO1
Q7	Let $\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$, and \vec{a} is a constant vector $\left(\vec{a}=a_{1} \hat{\imath}+a_{2} \hat{\jmath}+a_{3} \hat{k}\right)$. Prove that $\vec{\nabla} \cdot\left(\frac{\vec{a} \times \vec{r}}{r^{n}}\right)=0$	10	$\mathrm{CO3}$
Q8	Explain the physical significance of directional derivative of a scalar function. Find the directional derivative of \vec{v}^{2}, where $\vec{v}=x y^{2} \hat{\imath}+z y^{2} \hat{\jmath}+x z^{2} \hat{k}$	10	$\mathrm{CO3}$

	at the point $(2,0,3)$ in the direction $6 \hat{\imath}+4 \hat{\jmath}+2 \hat{k}$.		
Q9	Explain Stokes' theorem for a vector field. If $\vec{A}=\left(3 x^{2}+6 y\right) \hat{\imath}-14 y z \hat{\jmath}+20 x z^{2} \hat{k}$, compute the line integral $\oint \vec{A} \cdot \overrightarrow{d r}$ from $(0,0,0)$ to $(1,1,1)$ along the curve C given as $x=t, y=t^{2}, z=t^{3}$.	10	CO4
	OR		
Q9	If $\varphi=2 x y z^{2}, \vec{F}=x y \hat{\imath}-z \hat{\jmath}+x^{2} \hat{k}$ and C is the curve $x=t^{2}, y=2 t, z=t^{3}$ from $t=0$ to $t=1$, evaluate the following line integrals: a) $\oint \varphi d r$ b) $\oint \vec{F} \times \overrightarrow{d r}$ where $\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$	10	CO4
SECTION-CQ10 is compulsory. There is an internal choice for Q11			
Q10	a) If $\vec{A}=2 y z \hat{\imath}-x^{2} y \hat{\jmath}+x z^{2} \hat{k}$ and $\varphi=2 x^{2} y z^{3}$, calculate $(\vec{A} \cdot \vec{\nabla}) \varphi$ b) Find the value of n for which the vector $r^{n} \vec{r}$ is solenoidal, where $\vec{r}=x \hat{\imath}+$ $y \hat{\jmath}+z \hat{k}$ c) Verify the divergence theorem $\oint \vec{A} \cdot \overrightarrow{d S}=\iiint \vec{\nabla} \cdot \vec{A} d v$ For $\vec{A}=x y^{2} \hat{\imath}+y^{3} \hat{\jmath}+y^{2} z \hat{k}$ and S is surface of the cuboid defined by $0<x<1,0<y<1,0<z<1$	5+5+10	$\begin{gathered} \mathrm{CO}+ \\ \mathrm{CO}+ \\ \mathrm{CO}+ \end{gathered}$
Q11	a) Suppose that a cylindrical can is designed to have a radius of 1 inch and a height of 5 inch, but that the radius and height are off by the amounts $d r=0.03$ inch and $d h=-0.1$ inch. Estimate the resulting absolute change in the volume of the can. b) Show that the differential equation $\left(x y^{2}-e^{\frac{1}{x^{3}}}\right) d x-x^{2} y d y=0$ is not exact. Find the integrating factor for solving this equation. c) The heat flow vector $\vec{H}=k \overrightarrow{\nabla T}$, where T is the temperature and k is the thermal conductivity. Show that where $T=50 \sin \frac{\pi x}{2} \cosh \frac{\pi y}{2}$ then $\vec{\nabla} \cdot \vec{H}=0$.	5+5+10	$\begin{gathered} \mathrm{CO} 2+ \\ \mathrm{CO} 2+ \\ \mathrm{CO3} \end{gathered}$
	OR		
Q11	a) The resistance R produced by wiring resistors of R_{1} and R_{2} ohms in parallel can be calculated from the formula: $\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$ Show that $d R=\left(\frac{R}{R_{1}}\right)^{2} d R_{1}+\left(\frac{R}{R_{2}}\right)^{2} d R_{2}$ b) Prove that the differential equation	5+5+10	$\begin{gathered} \mathrm{CO} 2+ \\ \mathrm{CO}+ \\ \mathrm{CO} \end{gathered}$

$$
\left(x^{2} y-2 x y^{2}\right) d x-\left(x^{3}-3 x^{2} y\right) d y=0
$$

is homogeneous in x and y. Estimate the integrating factor to solve this equation.
c) Prove that the vector field given by

$$
\vec{F}=\left(x^{2}-y^{2}+x\right) \hat{\imath}-(2 x y+y) \hat{\jmath}
$$

is irrotational. Find its scalar potential.

