Name:

**Enrolment No:** 



## UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018

## Course: Digital Electronics Programme:B.Tech ASE-A Time: 03 hrs. Instructions:

## Semester: III

Max. Marks: 100

|        | SECTION A                                                                                                                                                                                                                                                                  |            |             |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|
|        | All questions are compulsory                                                                                                                                                                                                                                               |            |             |
| S. No. |                                                                                                                                                                                                                                                                            | Marks      | CO          |
| Q1     | Draw the logic diagram of a SR latch using NOR gates. Explain its Operation using Excitation table.                                                                                                                                                                        |            | CO3         |
| Q2     | Discuss the difference between combinational logic and sequential logic circuits                                                                                                                                                                                           | 4M         | CO3         |
| Q3     | <ul><li>(a)Convert the decimal number 430 to Excess-3 code</li><li>(b) Convert the gray code 1011001100 into its binary</li></ul>                                                                                                                                          | (2+2)      | CO1         |
| Q4     | Implement the following function using suitable multiplexer $F = \Sigma m(0,2,5,7)$                                                                                                                                                                                        | <b>4</b> M | CO2         |
| Q 5    | What are universal gates. Construct a logic circuit using NAND gates only for the Expression $x = A \cdot (B + C)$ .                                                                                                                                                       |            | CO1         |
| Q 6    | Design a 4-bit universal shift register and draw the circuit with the given mode of operation table 1                                                                                                                                                                      |            |             |
|        | S1S0Operation00Parallel01Shift right10Shift left11Inhibit<br>clockTable 1                                                                                                                                                                                                  | 10M        | CO4         |
| Q 7    | <ul> <li>(A) Prove the following Boolean identities using the laws of Boolean algebra:</li> <li>(i) (A + B)(A + C) = A + BC</li> <li>(ii) ABC + ABC + ABC = A(B + C)</li> <li>(B) Obtain the simplified expression for the output F and G in terms of the input</li> </ul> | [4+6]      | CO1+<br>C02 |

|      | variables for the circuit shown in figure 1                                                                                                                                                                                                                                                             |       |             |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|
|      | $A \longrightarrow F$                                                                                                                                                                                                                                                                                   |       |             |
| Q 8  | Figure 1           Describe the working of Master Slave J-K flip flop and explain the Race Around condition                                                                                                                                                                                             | 10M   | CO5         |
| Q 9  |                                                                                                                                                                                                                                                                                                         |       | CO1+<br>CO2 |
|      | SECTION-C<br>All questions are compulsory and each carries 20 marks. Internal choice for Q                                                                                                                                                                                                              | no 11 |             |
| Q 10 | <ul><li>(a)Design a 4-bit Asynchronous up/down counter</li><li>(b) Show how an SR flip flop can be converted into a JK flip flop</li></ul>                                                                                                                                                              | 20M   | CO5         |
| Q 11 | (a) Design a 3-bit binary-to gray code converter using suitable PLA<br>(b) Design the circuit diagram of common cathode BCD to seven-segment<br>display<br>(or)<br>( C ) Solve the following using Quine Mc- Clusky method<br>$F(x_1, x_2, x_3, x_4, x_5) = \sum (0,1,4,5,6,7,8,10,14,17,18,21,29,31).$ |       | CO4+<br>CO3 |

| Name:                                                                                                                              |                                                                                                                                           |                                                                                            |            |             |  |
|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------|-------------|--|
| Name:<br>Enrolment No:                                                                                                             |                                                                                                                                           |                                                                                            |            |             |  |
| UNIVERSITY OF PETROLEUM AND ENERGY STUDIES<br>End Semester Examination, December 2018<br>Course: Digital Electronics Semester: III |                                                                                                                                           |                                                                                            |            |             |  |
| Programme:B.Tech ASE-A                                                                                                             |                                                                                                                                           |                                                                                            |            |             |  |
| Time: 03 hrs.<br>Instructions:                                                                                                     |                                                                                                                                           |                                                                                            | Max. Mar   | ks: 100     |  |
|                                                                                                                                    | S                                                                                                                                         | SECTION A                                                                                  |            |             |  |
| <b>G</b> NI                                                                                                                        | All quest                                                                                                                                 | ions are compulsory                                                                        |            |             |  |
| S. No.                                                                                                                             |                                                                                                                                           |                                                                                            | Marks      | CO          |  |
| Q1                                                                                                                                 | What do you mean by "MUX"? Implem<br>output of mux if we connect the select line                                                          | nent the 4:16 MUX and what will be the es with logic"1101"?                                | 4M         | CO3         |  |
| Q2                                                                                                                                 | Draw the logic diagram of a D flip flop . I                                                                                               | Explain its Operation using Excitation table                                               | <b>4</b> M | CO2         |  |
| Q3                                                                                                                                 | Encode the following decimal number in BCD                                                                                                | code:                                                                                      |            |             |  |
|                                                                                                                                    | 1. 327.89                                                                                                                                 |                                                                                            | <b>4</b> M | CO1         |  |
|                                                                                                                                    | 2. 46                                                                                                                                     |                                                                                            |            | cor         |  |
| Q4                                                                                                                                 | Write the short notes on following (a) PIP                                                                                                | PO (b) SISO                                                                                | <b>4</b> M | CO2         |  |
| Q 5                                                                                                                                | Apply demorgan's theorem and simplify ((A+                                                                                                | BC')'+D(E+F')')'                                                                           | <b>4</b> M | CO1         |  |
|                                                                                                                                    | S                                                                                                                                         | ECTION B                                                                                   | II         |             |  |
| All questions are compulsory and each carries 10 marks. Internal choice for Qno 9                                                  |                                                                                                                                           |                                                                                            |            |             |  |
| Q 6                                                                                                                                | Design a neat circuit diagram of a 4-bit bi<br>having right and left data inputs and mode<br>right shift                                  | directional shift register using D- flip flop<br>e control M such that M=0 left shift, M=1 | 10M        | CO5         |  |
| Q 7                                                                                                                                | gives high output when the input combination 1001, otherwise low output. The output F2                                                    |                                                                                            | [10M]      | CO2         |  |
| Q 8                                                                                                                                | Implement the Full subtractor combinati                                                                                                   | onal logic circuit using multiplexer.                                                      | 10M        | CO3         |  |
| Q 9                                                                                                                                | <ul> <li>(a) Design a 4-bit down/up ripple Asy (or)</li> <li>(b) Design and explain the block diagram explain its limitations.</li> </ul> | of an 4-bit parallel adder/substractor and                                                 | 10M        | CO3+<br>CO2 |  |

|      | SECTION-C                                                                                                                                                                                                                                                                                                                                                                                                                         |       |             |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|
|      | All questions are compulsory and each carries 20 marks. Internal choice for Q                                                                                                                                                                                                                                                                                                                                                     | no 11 |             |
| Q 10 | <ul> <li>(a) Design the realization of SR flip-flop, JK flip-flop using D flip-flop.</li> <li>(b) Design a 3-bit gray-to binary code converter using suitable PLA</li> </ul>                                                                                                                                                                                                                                                      | 20M   | CO5         |
| Q 11 | <ul> <li>(a) Design and explain a synchronous MOD-12 down-counter using J-k flip-flop</li> <li>(b) Design and explain a 4-bit ring counter using D-flip flops with relevant timing diagrams.</li> <li>(or)</li> <li>(c) Solve the following using Quine Mc- Clusky method</li> <li>F(x<sub>1</sub>, x<sub>2</sub>, x<sub>3</sub>, x<sub>4</sub>, x<sub>5</sub>) = ∑(0,1,4,5,6,7,8,10,14,17,18,21,29,31) + ∑d(11,20,22)</li> </ul> | 20M   | CO4+<br>CO1 |