

Name: Enrolment No:			
UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018			
Course: Digital Electronics		Semester: III	
Time: 03 hrs.		Max. Marks: 100	
SECTION A All questions are compulsory			
S. No.		Marks	CO
Q1	What do you mean by "MUX"? Implement the $4: 16$ MUX and what will be the output of mux if we connect the select lines with logic" 1101 "?	4M	CO3
Q2	Draw the logic diagram of a D flip flop. Explain its Operation using Excitation table	4M	CO2
Q3	Encode the following decimal number in BCD code: 1. 327.89 2. 46	4M	CO1
Q4	Write the short notes on following (a) PIPO (b) SISO	4M	CO2
Q 5	Apply demorgan's theorem and simplify ($\left.\left(\mathrm{A}+\mathrm{BC} \mathrm{C}^{\prime}\right)^{\prime}+\mathrm{D}\left(\mathrm{E}+\mathrm{F}^{\prime}\right)^{\prime}\right)^{\prime}$	4M	CO1
SECTION B All questions are compulsory and each carries 10 marks. Internal choice for Qno 9			
Q 6	Design a neat circuit diagram of a 4-bit bidirectional shift register using D- flip flop having right and left data inputs and mode control M such that $M=0$ left shift, $M=1$ right shift	10M	CO5
Q 7	A combinational logic circuit has 4 inputs and two outputs F1 and F2.The output F1 gives high output when the input combinational is greater than or equal to 1001,otherwise low output. The output F2 gives high output when the input combination is less than 1001 otherwise the output F2 is LOW Implement it by using PLA.	[10M]	CO2
Q 8	Implement the Full subtractor combinational logic circuit using multiplexer.	10M	CO3
Q 9	(a) Design a 4-bit down/up ripple Asynchronous counter (or) (b) Design and explain the block diagram of an 4-bit parallel adder/substractor and explain its limitations.	10M	$\begin{gathered} \mathrm{CO}+ \\ \mathrm{CO}+ \end{gathered}$

SECTION-C All questions are compulsory and each carries 20 marks. Internal choice for Qno 11			
Q 10	(a) Design the realization of SR flip-flop, JK flip-flop using D flip-flop. (b) Design a 3-bit gray-to binary code converter using suitable PLA	20M	CO5
Q 11	(a) Design and explain a synchronous MOD-12 down-counter using J-k flip-flop (b) Design and explain a 4-bit ring counter using D-flip flops with relevant timing diagrams. (or) C) Solve the following using Quine Mc- Clusky method $\mathrm{F}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}, \mathrm{x}_{5}\right)=\sum(0,1,4,5,6,7,8,10,14,17,18,21,29,31)+\sum \mathrm{d}(11,20,22)$	20M	$\begin{gathered} \mathrm{CO4+} \\ \mathrm{CO} \end{gathered}$

