Name:			
Name: Enrolment No:			
	UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018		
Programme Name:B.Tech. CERPSemesterCourse Name:Momentum TransferTimeCourse Code:CHCE 2003Max. MNos. of page(s):3		er : III : 03 hrs Iarks : 100	
Instructi	ions: Assume the appropriate value of missing data if any. SECTION A		
S. No.		Marks	CO
Q 1	Reynold number is ratio of which two forces? (2) Draw a diagram between stress and rate of strain for three different fluids with viscosities μ_1, μ_2 and μ_3 , where $\mu_1 > \mu_2 > \mu_3$. (2)		CO1
Q 2	Water y_1 y_2 <th< td=""><td>4</td><td>CO1</td></th<>	4	CO1
Q 3	What are the three graphical methods of flow description? (2) which one of these is completely Lagrangian and which one is completely Eulerian description? (2)	4	CO2
Q 4	Write the Naiver Stokes Equation with mentioning the all the assumptions. (2+2)	4	CO2
Q 5	150 KPa + + + + + + + + + + + + +	4	CO3
	SECTION B		
Q 6	Explain how the shear stress transfers reaction in a fluid flow between two flat plates with bottom plate stationary using the newton's third law of action and (4). If the three fluids (μ_1, μ_2 and μ_3 , where $\mu_1 > \mu_2 > \mu_3$) (same as in question 1) are flowing between two flat plates with bottom plate stationary, and if the shear stress on the top plate is same then draw the velocity profiles of the three fluids (2) And tell what will be the relative order of velocity of upper plate $\binom{(v_1, v_2 \text{ and } v_3)}{v_3}$ at steady state? (2)	10	CO1

	If a specific velocity of upper plate, <i>v</i> , is required, then what will be the order of		
	required shear stress $(\tau_1, \tau_2 \text{ and } \tau_3)$ for the three fluids? (2)		
Q 7	$\frac{dia = 0.3 \text{ m}}{dia = 0.4 \text{ m}}$ A turbine (shown in the figure) is supplied with 0.6 m ³ /s of water from a 0.3m diameter pipe; the outlet pipe has 0.4m diameter. Assume flow to be steady, incompressible, and non-viscous. Determine the pressure drop across the turbine if the rate at which work is produced by the turbine is 60kJ/s. Derive the Hagen Poiseuille Formula by applying integral form of momentum balance in the pipe. (6) An incompressible flow fluid is flowing in a pipe as laminar flow and at steady state. If the diameter is halved and discharge (Q m ³ /s) is reduced to 1/4 th of its value then what will be effect on pressure drop? (2) What will happen in the above case if the flow is turbulent? (2)	10	CO3
Q 8	$D_{1} \rho_{Water} D_{2}$ Derive the formula for measuring the velocity in the Venturi-meter shown below? (6) Calculate the volumetric flow rate if D ₁ = 10 mm, D ₂ = 5 mm, h = 2 cm,	10	CO4
Q 9	$\rho_{water} = 10^3 kg/m^3 \rho_{manometer} = 13.6 \times 10^3 kg/m^3 , g = 10 \text{ m/s}^2. (4)$ While performing model testing of a typical centrifugal pump what conditions are valid between the two pumps if (a) N, Q and H of the two pumps are known (2.5) (b) H, D and N of the two pumps are known (2.5)	10	CO5

