| Name: <br> Enrolment No: |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Programme Name: B.Tech. CERP Semester : <br> Course Name $:$ Momentum Transfer Time <br> Course Code $: \mathbf{: C H C E} 2003$ Max. Marks: <br> Nos. of page(s) $: 3$  <br> Instructions: Assume the appropriate value of missing data if any.  |  |  |  |  |
| SECTION A |  |  |  |  |
| S. No. |  |  | Marks | CO |
| Q 1 | Reynold number is ratio of which two and rate of strain for three different $\begin{equation*} \mu_{1}>\mu_{2}>\mu_{3} \tag{2} \end{equation*}$ | forces? (2) Draw a diagram between stress uids with viscosities $\mu_{1}, \mu_{2}$ and $\mu_{3}$, where | 4 | CO1 |
| Q 2 |  | Figure shows a block of steel in equilibrium at a mercury water interface. Find the depths y1 and y2 for equilibrium of the block. Take the specific gravity of mercury and steel equal to 13.6 and 7.85 . | 4 | CO1 |
| Q 3 | What are the three graphical methods of completely Lagrangian and which one is | flow description? (2) which one of these is completely Eulerian description? (2) | 4 | CO2 |
| Q 4 | Write the Naiver Stokes Equation with m | entioning the all the assumptions. (2+2) | 4 | CO2 |
| Q 5 |  | ill be the outlet velocity in the given figure? ill be the total force on pipe? $(2+2)$ | 4 | CO 3 |
| SECTION B |  |  |  |  |
| Q 6 | Explain how the shear stress transfers rea with bottom plate stationary using the ne If the three fluids ( $\mu_{1}, \mu_{2}$ and $\mu_{3}$, where flowing between two flat plates with bott on the top plate is same then draw the vel <br> And tell what will be the relative order of steady state? (2) | ction in a fluid flow between two flat plates wton's third law of action and (4). <br> $\mu_{1}>\mu_{2}>\mu_{3}$ ) (same as in question 1) are m plate stationary, and if the shear stress ocity profiles of the three fluids (2) velocity of upper plate $\left(v_{1}, v_{2}\right.$ and $\left.v_{3}\right)$ at | 10 | CO1 |


|  | If a specific velocity of upper plate, $v$, is required, then what will be the order of required shear stress $\left(\tau_{1}, \tau_{2}\right.$ and $\left.\tau_{3}\right)$ for the three fluids? (2) |  |  |
| :---: | :---: | :---: | :---: |
| Q 7 | A turbine (shown in the figure) is supplied with $0.6 \mathrm{~m}^{3} / \mathrm{s}$ of water from a 0.3 m diameter pipe; the outlet pipe has 0.4 m diameter. Assume flow to be steady, incompressible, and non-viscous. Determine the pressure drop across the turbine if the rate at which work is produced by the turbine is $60 \mathrm{~kJ} / \mathrm{s}$. <br> OR <br> Derive the Hagen Poiseuille Formula by applying integral form of momentum balance in the pipe. (6) An incompressible flow fluid is flowing in a pipe as laminar flow and at steady state. If the diameter is halved and discharge ( $Q \mathrm{~m}^{3} / \mathrm{s}$ ) is reduced to $1 / 4^{\text {th }}$ of its value then what will be effect on pressure drop? (2) What will happen in the above case if the flow is turbulent? (2) | 10 | CO3 |
| Q 8 | Derive the formula for measuring the velocity in the Venturi-meter shown below? <br> (6) Calculate the volumetric flow rate if $\mathrm{D}_{1}=10 \mathrm{~mm}, \mathrm{D}_{2}=$ $5 \mathrm{~mm}, \mathrm{~h}=2 \mathrm{~cm}$, $\begin{equation*} \rho_{\text {water }}=10^{3} \mathrm{~kg} / \mathrm{m}^{3} \rho_{\text {manometer }}=13.6 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2} . \tag{4} \end{equation*}$ | 10 | CO4 |
| Q 9 | While performing model testing of a typical centrifugal pump what conditions are valid between the two pumps if <br> (a) $\mathrm{N}, \mathrm{Q}$ and H of the two pumps are known (2.5) <br> (b) H, D and N of the two pumps are known (2.5) <br> (c) $\mathrm{Q}, \mathrm{D}$ and N of the two pumps are known (2.5) <br> (d) P, D and N of the two pumps are known (2.5) | 10 | CO5 |

SECTION-C

| Q 10 | $\eta=10^{-3} \mathrm{~Pa}-\mathrm{s}$ from one reservoir to another reservoir at $6 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{s}$ through 140 m of $0.05-\mathrm{m}$-diameter pipe. See the figure below for several pipe-fittings installed on the pipe-line. The surface of the pipe is rough $(\epsilon / \mathrm{D}=0.001)$. The equivalent lengths for (a): 5D (b) 3D (c) 2D (d) 2D (e) 10D (f) 5D. | 20 | CO4 |
| :---: | :---: | :---: | :---: |
| Q 11 | Explain how you will design the pump shown in below figure using characteristic curve of pump and system characteristics. Explain how will you be able to operate the pump at Best Efficiency Point (BEP) both by controlling pump characteristic and system characteristic curves. | 20 | CO5 |



