Name:

Enrolment No:

UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Sem Examination, November 2018

Course: Chemical Reaction Engineering Program: B. Tech APE GAS Time: 03 hrs.

Semester: VII Code: CHEG331 Max. Marks: 100

Instructions: Answer all the questions of a section <u>at one place and in order</u>. Write legibly.

Q 2Consider a feed $C_{AO}=100$, $C_{BO}=400$, $C_{iO}=100$ to a steady flow reactor. The isothermal gas phase reaction is $A+3B\rightarrow 6R$. If $C_A=40$ at the reactor exit, what is C_B , X_A and X_B ?05CO3Q 3In an isothermal batch reactor 70% of a liquid reactant is converted in 13 min. What space time and space velocity are needed to effect this conversion in a plug flow reactor and in a mixed flow reactor?05CO4Q 4A gaseous feed of pure A (2 mol/liter, 100 mol/min) decomposes to give a variety of products in a plug flow reactor. The kinetics of the conversion is represented by05CO4	S. No.	SECTION A (20 Marks)	Ma rks	CO
phase reaction is $A+3B \rightarrow 6R$. If $C_A=40$ at the reactor exit, what is C_B , X_A and X_B ? Q 3 In an isothermal batch reactor 70% of a liquid reactant is converted in 13 min. What space time and space velocity are needed to effect this conversion in a plug flow reactor and in a mixed flow reactor? Q 4 A gaseous feed of pure A (2 mol/liter, 100 mol/min) decomposes to give a variety of products in a plug flow reactor. The kinetics of the conversion is represented by $A \rightarrow 2.5$ (products), $-r_A = (10 \text{ min}^{-1})C_A$ 05 CO4	Q 1	Derive the performance equation for the mixed flow reactor.	05	CO3
time and space velocity are needed to effect this conversion in a plug flow reactor and in a mixed flow reactor?05CO4Q 4A gaseous feed of pure A (2 mol/liter, 100 mol/min) decomposes to give a variety of products in a plug flow reactor. The kinetics of the conversion is represented by $A \rightarrow 2.5$ (products), $-r_A = (10 \text{ min}^{-1})C_A$ 05CO4	Q 2		05	CO3
products in a plug flow reactor. The kinetics of the conversion is represented by $A \rightarrow 2.5$ (products), $-r_A = (10 \text{ min}^{-1})C_A$ 05 CO4	Q 3	time and space velocity are needed to effect this conversion in a plug flow reactor and in a	05	CO4
	Q 4	products in a plug flow reactor. The kinetics of the conversion is represented by $A \rightarrow 2.5$ (products), $-r_A = (10 \text{ min}^{-1})C_A$	05	CO4

Q 5	An aqueous feed containing A (1mol/liter) enters a 2 liter plug flow reactor and reacts		
	away (2A \rightarrow R, -r _A =0.05 C_A^2 mol/liter.s). Find the outlet concentration of A for a feed rate	10	CO1
	of 0.5 liter/min.		
Q6	We plan to replace our present mixed flow reactor with one having double the volume. For		
	the same aqueous feed (10 mol A/liter) and the same feed rate find the new conversion.	10	02
	The reaction kinetics are represented by $A \rightarrow R$, $-r_A = kC_A^{1.5}$ and present conversion is 70 %.		
Q 7	Derive the performance equations for the recycle reactor.	10	CO3
Q 8	A stream of pure gaseous reactant A ($C_{A0} = 660 \text{ mmol/liter}$) enters a plug flow reactor at a flow rate of $F_{A0} = 540 \text{mmol/min}$ and polymerizes there as follows $3A \rightarrow R$, $-r_A = 54$ mmol/liter.min. How large a reactor is needed to lower the concentration of A in the exit stream to $C_{Af} = 330 \text{mmol/liter}$?		CO5
	SECTION-C (40 Marks)		
Q 9	An aqueous feed of A and B (400 liter/min, 100 mmol A/liter, and 200 mmolB/liter) is to be converted to product in a plug flow reactor. The kinetics of the reaction is represented by A+B \rightarrow R, -r _A = 200 C _A C _B mol/liter.min. Find the volume of reactor needed for 99.9% conversion of A to product.	(10 +	CO3 CO4
Q 10	We are planning to operate a batch reactor to convert A into R. this is a liquid reaction, the stoichiometry is $A \rightarrow R$, and the rate of reaction is given in table below. How long must we react each batch for the concentration to drop from C_{A0} = 1.3 mol/liter to C_{Af} = 0.3 mol/liter?		
	C _A , mol/liter 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.0 1.3 2.0	20	CO5
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		