Name: Enrolment No:			
Course: Thermodynamics and Heat Transfer Systems Semester: I Program: M.Tech Energy Systems(EPEC7028) Time: 03 hrs. Max. Marks: 100 Instructions:			
SECTION A			
S. No.		Marks	CO
Q 1	The temperature t on a thermometric scale is defined in terms of a property K by the relation $t=a \ln K+b$. Where a and b are constants. The values of K are found to be 1.83 and 6.78 at the ice point and the steam point, the temperatures of which are assigned the numbers 0 and 100 respectively. Determine the temperature corresponding to a reading of K equal to 2.42 on the thermometer.	4	CO1
Q 2	The thermal conductivity of an insulating material used over a hot pipe varies as $\mathrm{k}=$ $0.0545 \mathrm{x}\left(1+28.4 \times 10^{-4} \mathrm{~T}\right)$ where T is in ${ }^{\circ} \mathrm{C}$ and k is in W / mK. Insulation used for a thickness of 12 cm over a pipe of diameter 0.6 m . The pipe surface is at $300^{\circ} \mathrm{C}$ and the outside insulation temperature is $60^{\circ} \mathrm{C}$. Determine the heat flow for a length of 5 m . Also find the mid layer temperature.	4	CO1
Q 3	The properties of a certain fluid are related as follows: $u=196+0.718 t ; p v=0.287$ $(t+273)$. Where u is the specific internal energy $(\mathrm{kJ} / \mathrm{kg})$, t is in ${ }^{\circ} \mathrm{C}$, p is pressure $(\mathrm{kN} /$ $\left.\mathrm{m}^{2}\right)$, and v is specific volume ($\mathrm{m}^{3} / \mathrm{kg}$). For this fluid, Determine C_{V} and C_{P}.	4	CO2
Q 4	Heat is conducted through a material with a temperature gradient of $-9000{ }^{\circ} \mathrm{C} / \mathrm{m}$. The conductivity of the material is $25 \mathrm{~W} / \mathrm{mK}$. If this heat is convected to surroundings at $30^{\circ} \mathrm{C}$ with a convection coefficient of $345 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, Determine the surface temperature. If the heat is radiated to the surroundings at $30^{\circ} \mathrm{C}$ determine the surface temperature.	4	CO 3
Q 5	A single-cylinder, double-acting, reciprocating water pump has an indicator diagram which is a rectangle 0.075 m long and 0.05 m high. The indicator spring constant is 147 MPa per m . The pump runs at 50 rpm . The pump cylinder diameter is 0.15 m and the piston stroke is 0.20 m . Determine the rate in kW at which the piston does work on the water.	4	CO2
SECTION B			
Q 6	A spherical container holding a cryogenic fluid at $-140^{\circ} \mathrm{C}$ and having an outer diameter of 0.4 m is insulated with three layers each of 50 mm thick insulations of k_{1} $=0.02, \mathrm{k}_{2}=0.06$ and $\mathrm{k}_{3}=0.16 \mathrm{~W} / \mathrm{mK}$ (starting from inside). The outside is exposed to air at $30^{\circ} \mathrm{C}$ with $\mathrm{h}=15 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Determine the heat gain and the various surface temperatures.	10	CO3

Q 7	A mass of 8 kg gas expands within a flexible container so that the $\mathrm{p}-\mathrm{v}$ relationship is of the from $\mathrm{pv}^{1.2}=$ constant. The initial pressure is 1000 kPa and the initial volume is 1 m 3 . The final pressure is 5 kPa . If specific internal energy of the gas decreases by $40 \mathrm{~kJ} / \mathrm{kg}$, Determine the heat transfer in magnitude and direction.	10	CO4
Q 8	Discuss the classification of heat exchangers with diagram.	10	CO3
Q9	A single-cylinder, single-acting, 4 stroke engine of 0.15 m bore develops an indicated power of 4 kW when running at 216 rpm . Calculate the area of the indicator diagram that would be obtained with an indicator having a spring constant of $25 \times 10^{6} \mathrm{~N} / \mathrm{m}^{3}$. The length of the indicator diagram is 0.1 times the length of the stroke of the engine. (or) A six-cylinder, 4-stroke gasoline engine is run at a speed of 2520 RPM. The area of the indicator card of one cylinder is $2.45 \times 10^{3} \mathrm{~mm}^{2}$ and its length is 58.5 mm . The spring constant is $20 \times 10^{6} \mathrm{~N} / \mathrm{m}^{3}$. The bore of the cylinders is 140 mm and the piston stroke is 150 mm . Determine the indicated power, assuming that each cylinder contributes an equal power.	10	CO4
SECTION-C			
Q 10	Determine the area required in parallel flow heat exchanger to cool oil from $60^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ using water available at $20^{\circ} \mathrm{C}$. The outlet temperature of the water is $26^{\circ} \mathrm{C}$. The	20	CO5
Q 10	rate of flow of oil is $10 \mathrm{~kg} / \mathrm{s}$. The specific heat of the oil is $2200 \mathrm{~J} / \mathrm{kg} \mathrm{K}$. The overall heat transfer coefficient $\mathrm{U}=300 \mathrm{~W} / \mathrm{m} 2 \mathrm{~K}$. Compare the area required for a counter flow exchanger. (or) A composite cylinder is made of 6 mm thick layers each of two materials of thermal conductivities of $30 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$ and $45 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$. The inside is exposed to a fluid at $500^{\circ} \mathrm{C}$ with a convection coefficient of $40 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$ and the outside is exposed to air at $35^{\circ} \mathrm{C}$ with a convection coefficient of $25 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. There is a contact resistance of 1 $\times 10^{-3} \mathrm{~m}^{2}{ }^{\circ} \mathrm{C} / \mathrm{W}$ between the layers. Determine the heat loss for a length of 2 m and the surface temperatures. Inside dia $=20 \mathrm{~mm}$.	20	CO5
Q 11	A nozzle is a device for increasing the velocity of a steadily flowing stream. At the inlet to a certain nozzle, the enthalpy of the fluid passing is $3000 \mathrm{~kJ} / \mathrm{kg}$ and the velocity is $60 \mathrm{~m} / \mathrm{s}$. At the discharge end, the enthalpy is $2762 \mathrm{~kJ} / \mathrm{kg}$. The nozzle is horizontal and there is negligible heat loss from it. (a) Determine the velocity at exists from the nozzle. (b) If the inlet area is $0.1 \mathrm{~m}^{2}$ and the specific volume at inlet is $0.187 \mathrm{~m}^{3} / \mathrm{kg}$, Determine the mass flow rate. (c) If the specific volume at the nozzle exit is $0.498 \mathrm{~m}^{3} / \mathrm{kg}$, Determine the exit area of the nozzle.	20	$\mathrm{CO5}$

Name: Enrolment No:			
\left.UNIVERSITY OF PETROLEUM AND ENERGY STUDIES End Semester Examination, December 2018 $\right]$ Semester: I \quad Max. Marks: 100			
SECTION A			
S. No.		Marks	CO
Q 1	Determine the heat flow across a plane wall of 10 cm thickness with a constant thermal conductivity of $8.5 \mathrm{~W} / \mathrm{mK}$ when the surface temperatures are steady at $100^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$. The wall area is $3 \mathrm{~m}^{2}$. Also determine the temperature gradient in the flow direction.	4	CO1
Q 2	A new scale N of temperature is divided in such a way that the freezing point of ice is $100^{\circ} \mathrm{N}$ and the boiling point is $400^{\circ} \mathrm{N}$. Determine the temperature reading on this new scale when the temperature is $150^{\circ} \mathrm{C}$. Calculate the temperature where both the Celsius and the new temperature scale would be the same.	4	CO1
Q 3	An insulating wall 16 cm thick has one face at $600^{\circ} \mathrm{C}$ while the other is at $100^{\circ} \mathrm{C}$. The thermal conductivity of the material is given by $\mathrm{k}=0.078 \mathrm{x}(1+17.95 \times 10-4 \mathrm{~T}) \mathrm{W} /$ mK and T is in ${ }^{\circ} \mathrm{C}$. Determine the heat loss per unit area and the mid plane temperature.	4	CO2
Q 4	A mass of 1.5 kg of air is compressed in a quasi-static process from 0.1 MPa to 0.7 MPa for which $\mathrm{pv}=$ constant. The initial density of air is $1.16 \mathrm{~kg} / \mathrm{m}^{3}$. Determine the work done by the piston to compress the air.	4	CO2
Q 5	Discuss and provide equations (1) Overall Heat Transfer Coefficient (2) effectiveness of fins and efficiency of fins (3) Critical thickness of insulation (4) Steady State Heat Conduction with Variable Heat Conductivity	4	CO3
SECTION B			
Q 6	A steam turbine drives a ship's propeller through an 8:1 reduction gear. The average resisting torque imposed by the water on the propeller is $750 \times 10^{3} \mathrm{mN}$ and the shaft power delivered by the turbine to the reduction gear is 15 MW . The turbine speed is 1450 rpm . Determine (a) the torque developed by the turbine, (b) the power delivered to the propeller shaft, and (c) the net rate of working of the reduction gear.	10	CO4
Q 7	Derive an expression for Logarithmic Mean Temperature Difference (LMTD) for counter flow heat exchanger stating the assumption made. (or) Define critical radius of insulation. Derive critical radius of insulation for cylinders and spheres.	10	CO3
Q 8	A gas flows steadily through a rotary compressor. The gas enters the compressor at a temperature of $16^{\circ} \mathrm{C}$, a pressure of 100 kPa , and an enthalpy of $391.2 \mathrm{~kJ} / \mathrm{kg}$. The gas leaves the compressor at a temperature of $245^{\circ} \mathrm{C}$, a pressure of 0.6 MPa , and an	10	CO3

	enthalpy of $534.5 \mathrm{~kJ} / \mathrm{kg}$. There is no heat transfer to or from the gas as it flows through the compressor. (a) Evaluate the external work done per unit mass of gas assuming the gas velocities at entry and exit to be negligible. (b) Evaluate the external work done per unit mass of gas when the gas velocity at entry is $80 \mathrm{~m} / \mathrm{s}$ and that at exit is $160 \mathrm{~m} / \mathrm{s}$.		
Q 9	In a refinery fuel oil is to be cooled from $100^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ by water at $25^{\circ} \mathrm{C}$ flowing on the outside of the tube. The inner diameter is 25 mm and the oil flow rate is $1 \mathrm{~kg} / \mathrm{s}$. Water is heated to $45^{\circ} \mathrm{C}$. The tube is made of 0.5% carbon steel of thickness 3 mm . The inner diameter of the outer pipe is 62.5 mm . The outside may be considered as insulated. The properties of oil at $70^{\circ} \mathrm{C}$ are: density $=858 \mathrm{~kg} / \mathrm{m} 3$, kinematic viscosity $\mathrm{v}=60 \times 10^{-6}$ $\mathrm{m} / \mathrm{s} . \mathrm{k}=0.140 \mathrm{~W} / \mathrm{mK}$, specific heat $=2100 \mathrm{~J} / \mathrm{kg} \mathrm{K}$. Determine the overall heat transfer coefficient. Consider good performance even after fairly long usage. Tube material $\mathrm{k}=$ 53.6 W/mK.	10	CO4
SECTION-C			
Q 10	A spherical vessel of ID 0.3 m and thickness of 20 mm is made of steel with conductivity of $40 \mathrm{~W} / \mathrm{mK}$. The vessel is insulated with two layers of 60 mm thickness of conductivity 0.05 and $0.15 \mathrm{~W} / \mathrm{mK}$. The inside surface is at $-196^{\circ} \mathrm{C}$. The outside is exposed to air at $30^{\circ} \mathrm{C}$ with convection coefficient of $35 \mathrm{~W} / \mathrm{m} 2 \mathrm{~K}$. There is a contact resistance of $1 \times 10-3 \mathrm{~m} 2^{\circ} \mathrm{C} / \mathrm{W}$ between the two insulations. Determine the heat gain and also the surface temperatures and the overall heat transfer coefficient based on the outside surface area of the metallic vessel. (or) A furnace wall is of three layers, first layer of insulation brick of 12 cm thickness of conductivity $0.6 \mathrm{~W} / \mathrm{mK}$. The face is exposed to gases at $870^{\circ} \mathrm{C}$ with a convection coefficient of $110 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. This layer is backed by a 10 cm layer of firebrick of conductivity $0.8 \mathrm{~W} / \mathrm{mK}$. There is a contact resistance between the layers of 2.6×10^{-4} $\mathrm{m}^{2 \circ} \mathrm{C} / \mathrm{W}$. The third layer is the plate backing of 10 mm thickness of conductivity $49 \mathrm{~W} /$ mK . The contact resistance between the second and third layers is $1.5 \times 10^{-4} \mathrm{~m}^{2 \circ} \mathrm{C} / \mathrm{W}$. The plate is exposed to air at $30^{\circ} \mathrm{C}$ with a convection coefficient of $15 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Determine the heat flow, the surface temperatures and the overall heat transfer coefficient.	20	CO5
Q 11	Air flows steadily at the rate of $0.4 \mathrm{~kg} / \mathrm{s}$ through an air compressor, entering at $6 \mathrm{~m} / \mathrm{s}$ with a pressure of 1 bar and a specific volume of $0.85 \mathrm{~m}^{3} / \mathrm{kg}$, and leaving at $4.5 \mathrm{~m} / \mathrm{s}$ with a pressure of 6.9 bar and a specific volume of $0.16 \mathrm{~m}^{3} / \mathrm{kg}$. The internal energy of the air leaving is $88 \mathrm{~kJ} / \mathrm{kg}$ greater than that of the air entering. Cooling water in a jacket surrounding the cylinder absorbs heat from the air at the rate of 59 W . Calculate the power required to drive the compressor and the inlet and outlet cross-sectional areas.	20	CO5

